Week 4 Wednesday

1. (A) True or (B) False? The formula $\phi(t) = (1 - t^2, t(1 - t^2))$ defines an isomorphism $\phi : \mathbb{A}^1 \to V = V(y^2 - x^2 + x^3)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

2. Suppose $\phi: V \to W$ is a polynomial map between affine varieties. Which of the following is equivalent to ϕ being an isomorphism?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- (A) ϕ is bijective.
- (B) $\phi^{\sharp}: k[W] \to k[V]$ is bijective.
- (C) Both (A) and (B).
- (D) Neither (A) nor (B).

3. (A) True or (B) False? The set of points in $\mathbb{A}^2(\mathbb{R})$ satisfying the polar equation $r = \sin(2\theta)$ is an affine variety.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

(Possible hint: $sin(2\theta) = 2 sin \theta cos \theta$)

4. (A) True or (B) False? $X = \{(x, y) \mid x, y \in \mathbb{Z}\}$ is an algebraic subset of $\mathbb{A}^2(\mathbb{Q})$.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

5. Which of the following polynomials in $\mathbb{Q}[x, y]$ is irreducible?

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- (A) $xy^2 + y^3 + x^2 + xy$ (B) $x^3 + x^2y + xy^2 + y^2$
- (C) Both (A) and (B)
- (D) Neither (A) nor (B)

6. Suppose $f \in k[x, y]$ has total degree d, and let $V = V(f) \subseteq \mathbb{A}^2(k)$ be the corresponding curve. Let $L \subseteq \mathbb{A}^2(\mathbb{R})$ be a line. Prove that either $L \subseteq V$ or else $V \cap L$ has at most d points.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ