Week 4 Friday

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Make sure you know your neighbors' names. Then discuss:

Let k be an infinite field and let $V = V(x^2 - yz, x^2z - x^2)$. Write V as the union of three distinct nonempty affine varieties $Z_1 \cup Z_2 \cup Z_3$. Identify $I(Z_i)$ for each i.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Monomial Orders

1. (A) True or (B) False? For any monomial order > and any monomial $x^{\alpha} \in k[x_1, \ldots, x_n]$, there are finitely many monomials less than x^{α} .

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

2. (A) True or (B) False? Suppose > is a monomial order and $f_1, \ldots, f_r, g_1, \ldots, g_r \in k[x_1, \ldots, x_n]$. If $h = \sum_{j=1}^r f_j g_j$ is nonzero, then LT(h) is equal to LT(f_i)LT(g_i) for some $i = 1, \ldots, r$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

3. (A) True or (B) False? Suppose > is a monomial order and $f, g \in k[x_1, \ldots, x_n]$ are nonzero. Then LT(fg) = LT(f)LT(g).