Name:

Quiz 6

Part I (10 points). You will get 1 point for each correct answer, 0 points for each blank answer, and -1 point for each incorrect answer. The minimum possible score for this section is 0.

In all of the following, V is a finite dimensional complex vector space and $T \in \mathcal{L}(V)$. We write p_{char} and p_{\min} for the characteristic and minimal polynomials of T, respectively.

Т \mathbf{F} The degree of p_{\min} is the number of distinct eigenvalues of T. (1)If dim V = 3 and T has eigenvalues 0, 2 and -2, then $T^3 = 4T$. (2) \mathbf{T} F If dim V = 5 and null $T \neq$ null T^2 , then T has at most 3 distinct eigenvalues. (3)Т \mathbf{F} T is not surjective if and only if $p_{\text{char}}(0) = 0$. (4) \mathbf{T} F T F (5)If the matrix representation of T with respect to some basis is

$$M(T) = \begin{pmatrix} 7 & 1 & 0 & 0 & 0 \\ 0 & 7 & 1 & 0 & 0 \\ 0 & 0 & 7 & 0 & 0 \\ 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 3 \end{pmatrix}$$

then $p_{\text{char}} = p_{\min}$.

(6) Suppose 2 is the only eigenvalue of T and that we know the following.

Т **F**

F

$$\dim \operatorname{null} (T - 2I) = 2$$
$$\dim \operatorname{null} (T - 2I)^2 = 4$$
$$\dim \operatorname{null} (T - 2I)^3 = 6$$
$$\dim \operatorname{null} (T - 2I)^4 = 6$$

Then $p_{\min}(z) = (z-2)^2$.

- (7) If the matrix of T with respect to some basis is in Jordan form with two Jordan blocks of **T** F eigenvalue 0, one of size 2 and another one of size 3, then dim null $T^2 = \dim \operatorname{null} T + 2$.
- (8) If $p_{\text{char}}(z) = (z-3)^2(z-2)^5$, it is possible to have $p_{\min}(z) = (z-3)^4(z-2)$. T
- (9) If $T^2 = T$, then T is diagonalizable with all eigenvalues equal to 0 or 1. **T**
- (10) If 7 is an eigenvalue of T and null $(T 7I)^3 = \text{null} (T 7I)^4$, then 7 has multiplicity at **T** F most 3 as a root of p_{\min} .

Part II (10 points).

(11) Suppose $T \in \mathcal{L}(\mathbf{C}^4)$ is given by T(w, x, y, z) = (z, 0, x, y). Let v = (0, 1, 0, 0) and note that $T^4v = 0$ but $T^3v \neq 0$. Calculate a basis for V with respect to which the matrix of T is in Jordan form.

We generate a chain using v. We have Tv = (0, 0, 1, 0), $T^2v = (0, 0, 0, 1)$, $T^3v = (1, 0, 0, 0)$ and $T^4v = 0$. Thus the matrix of T with respect to T^3v , T^2v , Tv, v is

$$M(T) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

so this is a Jordan basis.

(12) Does there exist an operator T on a finite dimensional complex vector space V such that dim null T = 1 and dim null $T^2 = 3$? If so, provide an example and prove that it is an example. Otherwise, prove that it is impossible.

There cannot exist such an operator. Suppose for a contradiction that there did exist such an operator. Let $U = \operatorname{null} T$ and $W = \operatorname{null} T^2$. Observe that $\dim(W/U) = 3 - 1 = 2$. Choose a basis $w_1 + U, w_2 + U$ for the quotient space W/U. Since $w_i \in W = \operatorname{null} T^2$, we must have $Tw_i \in \operatorname{null} T = U$. But $\dim U = 1$, so there must exist constants a_1, a_2 not both equal to 0 such that

$$a_1 T w_1 + a_2 T w_2 = 0.$$

Then $a_1w_1 + a_2w_2 \in \operatorname{null} T = U$, which means that

$$a_1(w_1 + U) + a_2(w_2 + U) = 0$$

in W/U. This contradicts our choice of $w_1 + U, w_2 + U$ as a basis of W/U.