If
$$T \in \mathcal{L}(\mathbf{C}^3)$$
 is normal, $T(1, 1, 1) = (2, 2, 2)$, and $(z_1, z_2, z_3) \in \text{null } T$, then $z_1 + z_2 + z_3 = 0$.

If V is a finite dimensional inner product space, $T \in \mathcal{L}(V)$ is normal, and

$$||v|| = ||w|| = 2$$
 and $Tv = 3v$ and $Tw = 4w$,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

then ||T(v + w)|| = 10.

Let V be a finite dimensional real inner product space with dim V ≥ 2 and

$$U = \{T \in \mathcal{L}(V) : T \text{ is self-adjoint}\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Then U is a subspace of $\mathcal{L}(V)$.

Let V be a finite dimensional real inner product space with $\dim V \geq 2$ and

$$U = \{T \in \mathcal{L}(V) : T \text{ is self-adjoint}\}.$$

Then U is a subspace of $\mathcal{L}(V)$.

What if V is a finite dimensional *complex* inner product space?

Let V be a finite dimensional inner product space with dim V ≥ 2 and

$$U = \{T \in \mathcal{L}(V) : T \text{ is normal}\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Then U is a subspace of $\mathcal{L}(V)$.

5. Suppose V is a finite dimensional inner product space, $T \in \mathcal{L}(V)$ and U is a subspace of V. Here are two statements.

- I. U is invariant under T if and only if its orthogonal complement U^{\perp} is invariant under the adjoint T^* .
- II. U is invariant under T if and only if its annihilator U^0 is invariant under the dual map T'.

Which of these statements is true?

- (A) Only I.
- (B) Only II.
- (C) Both I and II.
- (D) Neither of them.