If $T \in \mathcal{L}(\mathbf{C}^4)$ and null $T^3 \neq$ null T^4 , then T is nilpotent.

Suppose T is an operator on a finite dimensional complex vector space V and

dim null
$$(T - 3I) = 3$$

dim null $(T - 3I)^2 = 6$
dim null $(T - 3I)^3 = 8$
dim null $(T - 3I)^4 = 9$
dim null $(T - 3I)^5 = 9$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Then the Jordan form of T has 3 Jordan blocks with eigenvalue 3.

If $T \in \mathcal{L}(\mathbf{C}^3)$ has eigenvalues 0, 1 and -1, then $T^3 = T$.

- 4. True or False?
- If V is a finite dimensional complex vector space and $T \in \mathcal{L}(V)$ is diagonalizable, then $p_{\mathrm{char}} = p_{\min}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Suppose $T \in \mathcal{L}(\mathbf{C}^4)$ is nilpotent and $p_{char} = p_{min}$. Then there exists a vector v such that T^3v , T^2v , Tv, v is a basis for \mathbf{C}^4 .

- 6. True or False?
- If V is an finite dimensional complex vector space and $T \in \mathcal{L}(V)$, then $T^{\dim V}$ is diagonalizable.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

There exists an operator $T \in \mathcal{L}(\mathbf{C}^6)$ such that $p_{char}(z) = (z-3)^4(z-4)^2$ and $p_{min}(z) = (z-3)^3(z-4)^2$.

Suppose V is a finite dimensional complex vector space with dim $V \ge 2$. The set

$$U = \{T \in \mathcal{L}(V) : T \text{ is nilpotent}\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

is a subspace of $\mathcal{L}(V)$.