Suppose $T \in \mathcal{L}(\mathbf{F}^4)$ is not injective and $\dim E(4,T) = 3$. Then T is diagonalizable.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Suppose $T \in \mathcal{L}(\mathbf{F}^4)$ is not diagonalizable and dim range (T - 3I) = 1. Then T + 2I is invertible.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Suppose $T \in \mathcal{L}(\mathbf{F}^3)$ has eigenvalues 3, -4, 17. Then dim range (T - 3I) = 2.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Suppose $\dim V \ge 2$ and

$$U = \{T \in \mathcal{L}(V) : T \text{ is diagonalizable} \}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Then U is a subspace of $\mathcal{L}(V)$.

If $T \in \mathcal{L}(V)$ and $U = \operatorname{range} T$, then T/U is the zero operator on V/U.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Suppose $T \in \mathcal{L}(V)$ and U is an invariant subspace. Then every eigenvalue of T/U is also an eigenvalue of T.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Suppose $T \in \mathcal{L}(V)$ and U is an invariant subspace. Then every eigenvalue of T/U is also an eigenvalue of T.

What if V is assumed to be finite dimensional over C?

There exists an non-invertible operator $T \in \mathcal{L}(V)$ and a basis v_1, \ldots, v_n of V such that M(T) has no zeroes on the diagonal.