
Problem Set 6

Note. You must provide a proof for all assertions you make in your solutions, whether the problem
explicitly asks for it or not.

Problem 1. (1 point) Let X and Y be metric spaces and let E be a dense subset of X. Show that
if f and g are both continuous functions X → Y such that f(x) = g(x) for all x ∈ E, then in fact
f(x) = g(x) for all x ∈ X.

Proof. For any a ∈ X, let (xn)n∈N be a sequence in E converging to a. Then

f(a) = lim
n→∞

f(xn) = lim
n→∞

g(xn) = g(a).

Problem 2. (1 point) Let X, X ′, Y and Y ′ be metric spaces, and regard X ×X ′ and Y × Y ′ as
metric spaces using the product metric defined in problem 10 of problem set 3. Suppose f : X → Y

and f ′ : X ′ → Y ′ are continuous functions. Show that the function f × f ′ : X × X ′ → Y × Y ′

defined by
(f × f ′)(x, x′) = (f(x), f ′(x′))

is also continuous.

Proof. Since every open set is a union of open balls, it suffices to show that the preimage of every
open ball of Y × Y ′ is open. Consider an open ball

BY×Y ′((y, y′), r) = BY (y, r)×BY ′(y′, r).

Then

(f × f ′)−1(BY×Y ′((y, y′), r)) = {(x, x′) : f(x) ∈ BY (y, r) and f ′(x′) ∈ BY ′(y′, r)}
= f−1(BY (y, r))× f ′−1(BY ′(y′, r)).

Now for any point (x, x′) in this preimage, we know that f−1(BY (y, r)) is an open neighborhood
of x since f is continuous, so there is an open ball BX(x, s) ⊆ f−1(BY (y, r)). Similarly there is an
open ball BX(x′, s′) ⊆ f ′−1(BY ′(y′, r)). Then clearly

BX×X′((x, x′), min{s, s′}) = BX(x, min{s, s′})×B′X(x′, min{s, s′}) ⊆ f−1(BY (y, r))×f ′−1(BY ′(y′, r)).

Thus (x, x′) is an interior point of the preimage, so the preimage is open as well.
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Problem 3. (1 point) Let X be a metric space. Show that the metric dX : X×X → R is uniformly
continuous, when X ×X is given the product metric defined in problem 10 of problem set 2 and
R is given the euclidean metric.

Proof. Fix ε  0. For any point (x, y) and (x′, y′) such that

dX×X((x, y), (x′, y′)) � ε/2

observe that we have

dX(x, y) ≤ dX(x, x′) + dX(x′, y′) + dX(y′, y) � dX(x′, y′) + ε

and similarly that
dX(x′, y′) � dX(x, y) + ε.

In other words, we have
dX(x, y)− ε � dX(x′, y′) � dX(x, y) + ε

so |dX(x, y)− dX(x′, y′)| � ε.

Problem 4. (1 point) Let (an)n∈N be a sequence of real numbers such that lim sup |an| = 0. Then
let X := [0, 1] and for each n ∈ N consider the function fn : X → R defined as follows.

fn(x) = (x + an)2.

Does this sequence converge uniformly?

Proof. Note that absolute values are always nonnegative, so

0 ≤ lim inf
n→∞

|an| ≤ lim sup
n→∞

|an| = 0

so actually lim inf |an| = lim sup |an| = 0, so lim |an| = 0, which means that lim an = 0. Then clearly
lim fn(x) = x2 so the sequence is converging pointwise to the function f given by f(x) = x2. Then

|fn(x)− f(x)| =
∣∣∣2anx + a2

n

∣∣∣ ≤ 2 |anx|+
∣∣∣a2

n

∣∣∣ ≤ 2 |an|+ |an|2 .

In other words, we have
‖fn − f‖sup ≤ 2 |an|+ |an|2 .

But lim an = 0 implies that lim(2 |an| + |an|2) = 0, so for any ε  0, there exists N such that
2 |an|+|an|2 � ε for all n ≥ N , and then the above inequality shows that we also have ‖fn−f‖sup � ε

for all n ≥ N . In other words, the convergence is uniform.

Problem 5. (1 point) Let X be a metric space. Given a pair of points x, y ∈ X, a path from x to y

is a continuous function f : [0, 1]→ X such that f(0) = x and f(1) = y. Then X is path-connected
if, for every pair of points x, y ∈ X, there exists a path from x to y.

Show that, if X is path-connected, then it is also connected.
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Proof. Suppose X is not connected and let U be a nonempty proper open and closed subset.
Pick x ∈ U and y /∈ U . Then there exists a path f : [0, 1] → X from x to y. Then f−1(U)
is an open and closed subset of [0, 1] using continuity of f . The fact that f(x) = 0 means that
0 ∈ f−1(U), so f−1(U) is nonempty. Moreover, we know that 1 /∈ f−1(U) since f(1) = y /∈ U . Thus
f−1(U) is a nonempty proper open and closed subset of [0, 1]. This contradicts the fact that [0, 1]
is connected.

Problem 6. (3 points) Let X be an open subset of R2. Show that X is connected if and only if
it is path-connected. Hint. When X is nonempty, fix a point a ∈ X and let U be the set of x ∈ X

such that there exists a path from a to x. Show that U is open and closed in X.

Remark. It is not true for general subsets of R2 that connectedness implies path-connectedness. See
http://math.stanford.edu/˜conrad/diffgeomPage/handouts/sinecurve.pdf for a description
of a counterexample.

Problem 7. (3 points) Let X be a metric space and suppose (fn)n∈N is a uniformly conver-
gent sequence of uniformly continuous functions on X. Show that f := lim fn is also uniformly
continuous.

Problem 8. (3 points) Let X be a metric space and E a dense subset. Suppose (fn)n∈N is a se-
quence of continuous functions on X which converges uniformly on E. Then (fn)n∈N also converges
uniformly on X. Hint. Show that (fn)n∈N is uniformly Cauchy on X.

Proof sketch. For x ∈ X and t ∈ E,

|fn(x)− fm(x)| ≤ |fn(x)− fn(t)|+ |fm(x)− fn(t)|+ |fn(t)− fm(t)| .

Problem 9. Let
X := Rr

({
− 1

n2 : n = 1, 2, . . .
})

and for each positive integer n, define the function fn : X → R as follows.

fn(x) = 1
1 + n2x

You should be able to verify that the series ∑ fn(x) converges for all x ∈ X r {0}.

(a) (3 points) Describe all subsets S ⊆ X such that the series of functions ∑ fn is uniformly
convergent on S. Hint. Use problem 8 to rule out some possibilities.

(b) (1 point) Let f : X r {0} → R be the pointwise limit of the series of functions ∑ fn. Show
that f is continuous.
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