
Sequences

1 Sequences
Let X be a metric space. A sequence in X is collection (xn)n∈N = (x0, x1, x2, . . . ) where xn ∈ X

for all n ∈ N. A point x ∈ X is a limit of the sequence (xn)n∈N if, for every open set U containing
x, there exists some natural number N such that xn ∈ U for all n ≥ N . If x is a limit of (xn)n∈N,
we say that (xn)n∈N converges to x. If (xn)n∈N has a limit, we say that it is convergent.

Example 1.1. Let X := R and xn = 1/(n + 1) for all n, so that we have the sequence

(1, 1/2, 1/3, 1/4, . . . )

and 0 is a limit of this sequence. Indeed, given any open set U containing 0, there exists an open
ball B(0, r) ⊆ U . By the archimedean property there exists some N such that 1/N � r. But then

xn = 1/(n + 1) � 1/n ≤ 1/N � r

for all n ≥ N , which means that xn ∈ B(0, r) ⊆ U for all n ≥ N .

Example 1.2. Let X := R and xn = (−1)n for all n ∈ N. In other words, we consider the sequence

(1,−1, 1,−1, . . . ).

This sequence is not convergent. Indeed, consider first any a ≥ 0. Then −1 /∈ B(a, 1), so there
does not exist some N sufficiently large that xn ∈ B(a, 1) for all n ≥ N . On the other hand, for
a � 0, we have 1 /∈ B(a, 1), so again there does not exist some N such that xn ∈ B(a, 1) for all
n ≥ N . Thus no a ∈ R is a limit of this sequencce, so this sequence is not convergent.

Lemma 1.3 (Uniqueness of limits). Let (xn)n∈N be a sequence in a metric space X. If x and x′

are both limits of (xn)n∈N, then x = x′. Thus, it makes sense to define the expression

lim
n→∞

xn

to refer to the unique limit of a convergent sequence (xn)n∈N.

Proof. Pick some positive real number ε. Then B(x, ε/2) is an open set containing x, so there exists
some N such that xn ∈ B(x, ε/2) for all n ≥ N . Similarly there exists some N ′ such that B(x′, ε/2)
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contains xn for all n ≥ N ′. Then for all n ≥ max{N, N ′}, we have xn ∈ B(x, ε/2) ∩ B(x′, ε/2).
This means that

d(x, x′) ≤ d(x, xn) + d(xn, x′) � ε/2 + ε/2 = ε.

Notice that this is true for all positive real numbers ε. In other words, d(x, x′) is a lower bound
for the set (0,∞), which means that d(x, x′) ≤ 0 since 0 = inf(0,∞). But d(x, x′) ≥ 0 by the
positivity axiom (M1) for metrics, so d(x, x′) = 0, and this in turn implies that x = x′ by axiom
(M4) for metrics.

Remark 1.4. This last paragraph of the above proof is far more detailed than you’ll usually see
in the mathematical literature. Usually, this kind of logic would be abbreviated to something like
“Since ε 
 0 was arbitrary, d(x, x′) = 0.” This comes up very often. See problem 1 for another
example.

Remark 1.5. Limit points and limits are closely related, but, despite the similarity of the termi-
nology, they are not identical concepts. You should work through problems 2, 3 and 4 to get your
bearings straight.

2 Subsequences
Let (xn)n∈N be a sequence in a metric space X and let n1 � n2 � n3 � · · · be an infinite increasing
sequence of integers. A subsequence of (xn)n∈N is a sequence of the form (xnk

)k∈N.

Example 2.1. Consider the sequence (xn)n∈N where xn = (−1)n for all n ∈ N. Then the infinite
increasing sequence of integers nk = 2k gives rise to the subsequence

(x0, x2, x4, . . . ) = (1, 1, 1, . . . )

and this new sequence (xnk
)k∈N evidently converges to 1, even though we already saw before that

(xn)n∈N does not itself converge.

If (xn)n∈N is a sequence, then the limit of some subsequence of (xn)n∈N is called a subsequential
limit of (xn)n∈N.

We can reformulate this definition as follows. Suppose we’ve fixed a sequence (xn)n∈N as well
as a point a ∈ X. I challenge you by telling you a distance from a as well as a position in the
sequence, and asking that you find some point of the sequence which is further along than the
position I told you and closer to a than the distance I told you. If you can always do this, no
matter what distance and position I tell you, then, and only then, is a a subsequential limit. This
is made precise by lemma 2.2.

Lemma 2.2. Let (xn)n∈N be a sequence in a metric space X and let a ∈ X be some point. Then
a is a subsequential limit of (xn)n∈N if and only if, for every open set U containing a and every
N ∈ N, there exists some n ≥ N such that xn ∈ U .

Proof. Suppose a is a subsequential limit, so there exists some natural numbers n0 � n1 � · · ·
such that (xnk

)k∈N converges to a. Let U be an open set containing a and N ∈ N. Since (xnk
)k∈N
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converges to a, by definition of convergence there exists some K such that, for all k ≥ K, we have
xnk
∈ U . Now since n0 � n1 � · · · , there must also exist some k ≥ K such that nk ≥ N , and we

have found the desired point of the sequence.
For the converse, we must construct a subsequence converging to a. To start things off, let

n0 := 0. Inductively, suppose we have chosen n0, . . . , nk−1, and consider the open ball B(a, 1/k).
By our assumption on a, there exists some nk ≥ nk−1− 1 such that xnk

∈ B(a, 1/k). Now consider
the resulting sequence (xnk

)k∈N. We claim that it converges to a. Indeed, suppose U is any open
set containing a. Then there exists some ε 
 0 such that B(a, ε) ⊆ U . But there exists some K

such that 1/K � ε. Then for all k ≥ K, we have 1/k ≤ 1/K � ε, which means that

xnk
∈ B(a, 1/k) ⊆ B(a, ε) ⊆ U.

Thus (xnk
)k∈N converges to a.

Corollary 2.3. Let (xn)n∈N be a sequence in a metric space in X and let E be the set of all of its
subsequential limits. Then E is closed.

Proof. We’ll show that XrE is open, so suppose a ∈ XrE. In other words, a is not a subsequential
limit. By lemma 2.2, this means that there exists some open set U containing a and some position
N ∈ N such that xn /∈ U for any n ≥ N . But then, by the same lemma, no other point of U can
be a subsequential limit either! In other words, U ⊆ X r E. But then we can find an open ball
B(a, r) ⊆ U ⊆ X r E, and this shows that a is an interior point of X r E.

For a different, more hands-on proof of corollary 2.3, see the proof of theorem 3.7 in Rudin.

3 Cauchy Sequences
Let X be a metric space. A sequence (xn)n∈N is Cauchy if, for every ε 
 0, there exists some N ∈ N
such that d(xm, xn) � ε whenever m, n ≥ N .

Lemma 3.1. If (xn)n∈N is a convergent sequence in a metric space X, then (xn)n∈N is also Cauchy.

Proof. Let ε 
 0 and let a = lim xn. Since the sequence is convergent, there exists N such that
xn ∈ B(a, ε/2) for all n ≥ N . Then notice that for all m, n ≥ N , we have

d(xm, xn) ≤ d(xm, a) + d(a, xn) � ε/2 + ε/2 = ε.

The converse of lemma 3.1 need not be true in general. Before we get to an example of this
phenomenon, let us make a definition: a metric space X is complete if every Cauchy sequence is
convergent. Two very important facts are that compact metric spaces are complete, and that Rn

with the euclidean metric is complete. We will prove these facts tomorrow. For now, let us discuss
a non-example.

Example 3.2. We can construct a Cauchy sequence which does not converge as follows. Let
a :=

√
2, or any other irrational number. For any n ∈ N, density of the rationals guarantees that
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there exists a rational number xn such that

a− 1/(n + 1) � xn � a.

Now note that for any open ball B(a, ε), there exists some N such that 1/(N + 1) � ε, and then

d(a, xn) ≤ 1/(n + 1) ≤ 1/(N + 1) � ε

for all n ≥ N , so xn ∈ B(a, ε). This shows that the sequence (xn)n∈N of rational numbers converges
to a in R, so by lemma 3.1, it must be Cauchy.

But instead of regarding this as a sequence in R, let us regard (xn)n∈N as a sequence in Q. If
this sequence had a limit in Q, then it would also be a limit in R, but we know that limits are
unique by lemma 1.3 and we explicitly chose a to be irrational. So this sequence cannot have a
limit in Q. Thus (xn)n∈N is a Cauchy sequence in the metric space Q which does not converge. We
conclude that Q is not a complete metric space.

Remark 3.3. The above example might seem a bit contrived since we took a sequence which
converges in a larger space but then just forgot about the larger space, but it’s actually not
contrived at all. It turns out that any metric space sits inside a bigger complete metric space called
its completion. So any time you run into a non-convergent Cauchy sequence, its because you’re
looking for a limit in too small a space, and you’ll find that limit in a bigger space.

In fact, it turns out that R is the completion of Q. One can even define R in this way, but to
make sense of this approach of defining R, one has to talk about something a big more general
than metric spaces. Talk to me in office hours if you’re curious about this.

4 Sample Problems
Problem 1. Let X be a metric space and E a bounded subset of X. Then Ē is also bounded,
and in fact diam(Ē) = diam(E).

Solution. Let R := diam(E). Since E ⊆ Ē, it is clear that R ≤ diam(Ē), so we just need to show
that d(a, b) ≤ R for all a, b ∈ Ē. Fix some ε 
 0. Then the open ball B(a, ε/2) contains at least
one point x that is also in E. This point could be a itself if it happens that a ∈ E, but if a /∈ E,
then a is a limit point of E so we can still find such an x. Similarly, we can also choose a point
y ∈ B(b, ε/2) ∩ E. Then

d(a, b) ≤ d(a, x) + d(x, b) ≤ d(a, x) + d(x, y) + d(y, b) � ε/2 + R + ε/2 = R + ε.

Since ε 
 0 is arbitrary, we conclude that d(a, b) ≤ R.

Remark. Note that the above problem is not about sequences at all, but it does use this “since
ε 
 0 is arbitrary” trick that we saw in the proof of lemma 1.3, which is very important to get used
to. You should make sure you can turn the last sentence of the above solution into a full-fledged
formal proof.
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Problem 2. Let E be a subset of a metric space X.

(a) Show that if a ∈ X is a limit point of E, then there exists a sequence (xn)n∈N in E whose limit
is a.

(b) Use part (a) to conclude that a point a ∈ X is an element of Ē if and only if there exists a
sequence in E whose limit is a.

Problem 3. Let X be a metric space and E a subset. Give an example of a sequence (xn)n∈N in
E whose limit is some point a ∈ X, but a is not a limit point of E.

Hint. Consider the X := R, E := {0}, and the sequence (xn)n∈N where xn = 0 for all n ∈ N.

Problem 4. Let (xn)n∈N be a sequence in a metric space X and consider the set E := {xn : n ∈ N}.

(a) Give an example of a situation when some point a ∈ X is a limit point of E even though a is
not the limit of the sequence (xn)n∈N.

(b) Give an example of a situation when a is the limit of the sequence (xn)n∈N even though a is
not a limit point of E.

Hint. For (a), consider the sequence (xn)n∈N in R where x2k = 1/(k + 1) and x2k+1 = 1 for all k.
For (b), consider the sequence (xn)n∈N in R where xn = 0 for all n ∈ N.

Problem 5. Let (xn)n∈N be a convergent sequence in a metric space X. Show that the set E :=
{xn : n ∈ N} is bounded.

Hint. Let a be the limit of the sequence and consider U := B(a, 1). Then U contains almost all of
the points of E. Choose some real number R that is bigger than 1 and is also bigger than d(a, xn)
for the finitely many xn such that xn /∈ U . Now find an upper bound for d(xm, xn) using the
triangle inequality. This upper bound should be some expression involving R.

Problem 6. Let (xn)n∈N be a Cauchy sequence in a metric space X and suppose a is a subsequential
limit of (xn)n∈N. Then (xn)n∈N converges to a.

Proof. Let U be some open set containing a, and let ε 
 0 be such that B(a, ε) ⊆ U . Since the
sequence is Cauchy, there exists an N such that d(xm, xn) � ε/2 for all m, n ≥ N . Since a is a
subsequential limit, there exists some m ≥ N such that xm ∈ B(a, ε/2). Then for all n ≥ N , we
have

d(a, xn) ≤ d(a, xm) + d(xm, xn) � ε/2 + ε/2 = ε

so xn ∈ B(a, ε) ⊆ U .

Problem 7. Let (xn)n∈N be a Cauchy sequence in a metric space X. Show that the set E := {xn :
n ∈ N} is bounded.

Hint. There exists an N such that d(xm, xn) � 1 for all m, n ≥ N . Now note that the set {d(xm, xn) :
m, n ≤ N} is finite, so let R be some number that is both larger than every element of this set
and is larger than 1. Then explain why diam(E) ≤ R.
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