
Cantor Set

The Cantor set is an specific subset of R which has lots of weird and surprising properties.

1 Construction
Let E0 := [0, 1]. We then remove the open middle third from the interval E0 to get the set E1. In
other words,

E1 := [0, 1/3] ∪ [2/3, 1].

Now to get E2, we remove the open middle third from each of the two segments [0, 1/3] and [1/3, 1].
In other words,

E2 := [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1].

We keep going like this. Inductively, we construct a sequence of sets

E0 ⊇ E1 ⊇ E2 ⊇ · · ·

such that En is the union of 2n disjoint closed intervals, each of diameter 3−n. The Cantor set is
the set

E :=
⋂

n∈N
En,

and we regard it as a metric space by restricting the euclidean metric on R.

2 Alternative Construction
We can express this construction slightly differently using ternary expansions. There will be many
unproved assertions in this section. For this reason, you should note that everything that we
can prove about the Cantor set using ternary expansions can also be proved without ternary
expansions. But sometimes it’s a bit easier to think about this alternative construction using
ternary expansions, so it’s useful to know this alternative construction even though we won’t prove
everything (or really anything at all) in this section formally.

We haven’t proved this in class, but hopefully you know that any number in [0, 1] has a ternary
expansion of the form

a.a0a1a2a2 · · ·

where a is either 0 or 1, and ai ∈ {0, 1, 2} for all i ∈ N. If you want to see a proof of this fact,
note that in section 1.22, Rudin explains why decimal expansions exist. The proof that ternary
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expansions exist is identical, but with the number 3 in place of the number 10 everywhere.
A fact that you may be familiar with is that some numbers have multiple ternary expansions.

For example, the usual ternary expansion of the number 1 is 1.0000 · · · , but 0.2222 · · · is an
alternative ternary expansion. (The analogous fact for decimal expansions, instead of ternary
expansions, is 0.9999 · · · = 1.) The fact that these two ternary expansions represent the same
number is something we will prove later on in this class. For now, you should just accept that
these two ternary expansions represent the same number. Here are two other examples of non-
unique ternary expansions.

1/3 = 0.10000 · · · = 0.022222 · · ·
7/9 = 0.21000 · · · = 0.202222 · · ·

Now notice that E1 is precisely the set of real numbers which have a modified ternary expansion
that does not have a 1 in the first place after the decimal point. Indeed, the numbers in [0, 1/3]
can all be written in the form 0.0a1a2a3 · · · , and the numbers in [2/3, 1] can all be written in the
form 0.2a1a2a3 · · · . Then E2 is the set of all real numbers which have a ternary expansion that
does not have a 1 in either of the first 2 decimal places. For example, the numbers in [0, 1/9] can
all be written in the form 0.00a2a3 · · · , and the numbers in [2/9, 1/3] can all be written in the form
0.02a2a3 · · · , and so forth. In general, the numbers in En all have ternary expansions which do not
have any 1’s anywhere in the firsrt n places after the decimal. In other words,

En := {0.a0a1 · · · : a0, a1, · · · ∈ {0, 1, 2}, a0, · · · an−1 6= 1}.

Thus the Cantor set E can also be described as the set of all numbers which have a ternary
expansion containing no 1’s.

Notice that if a number has a ternary expansion containing no 1’s, it actually has only one
such ternary expansion. For example, we know that 2/3 has a ternary expansion 0.2000 · · · which
does not contain any 1’s. This number has only one other ternary expansion, which is 0.1222 · · · ,
and this ternary expansion does contain a 1.

3 Properties
Here are some properties of the Cantor set. Each of these properties individually is not so unusual:
it’s easy to think of uncountable subsets of R, and compact subsets of R, and “perfect” subsets
of R (defined below), and subsets of R which have empty interior... No one of these properties is
special. The Cantor set is unusual because it satisfies all of these properties.

• The Cantor set E is nonempty. For example, notice that 0 ∈ En for all n, so 0 ∈ E.
Alternatively, notice that whenever we remove a middle third, the endpoints of that removed
bit remain fixed in all future stages. For example, in the first step, we removed (1/3, 2/3)
from E0 := [0, 1], and then 1/3 and 2/3 remain fixed in the sense that they are both elements
of En for all n ≥ 0, and therefore are both elements of E.
In fact, not only is E nonempty, it is even uncountable. You can prove this without appealing
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to ternary expansions (if you’d like to see this, take a look at Rudin’s theorem 2.43), but
we’ll give a more elementary proof of uncountability here using ternary expansions. The
argument is basically identical to the usual Cantor’s diagonalization argument for proving
uncountability.
Suppose the Cantor set E were countable, so that we have a list x0, x1, . . . containing all of
the elements of E. Each of these elements has a ternary expansion containing no 1’s, so let
us write out these ternary expansions.

x0 = 0.a0,0a0,1a0,2 · · ·
x1 = 0.a1,0a1,1a1,2 · · ·

...
xi = 0.ai,0ai,1ai,2 · · ·

...

Now construct a number y as follows. We know that a0,0 is either 0 or 2, so let b0 be whichever
of the two values (0 or 2) that a0,0 is not. Again, we know that a1,1 is either 0 or 2, so let
b1 be whichver of the two values that a1,1 is not. In general, let bn be equal to the unique
element of the set {0, 2}r {an,n}. Now consider

y := 0.b0b1b2 · · · .

Notice that each bi is either 0 or 2, so y has a ternary expansion which contains no 1’s, so
y is an element of E. On the other hand, y 6= xi for all i. Indeed, if y = xi for some i, then
0.ai,0ai,1 · · · and 0.b0b1 · · · are two distinct ternary expansions for the same number, both of
which contain no 1’s, and we already noted before that this cannot happen.

• E is compact. See problem 1.

• Since E is a compact subset of R, it must be closed in R. In particular, it contains all of
its limit points. In fact, more is true: all of its points are limit points (in other words, E

is a perfect subset of R). To see this, suppose a ∈ E and consider an arbitrary open ball
B(a, r). Then for n large enough, we know that 3−n � r. Since a ∈ E ⊆ En, and En is
the union of several disjoint closed intervals, one of these intervals In contains a. Moreover,
diam(In) = 3−n, so if x is one of the endpoints of In distinct from a, then

d(a, x) ≤ diam(In) = 3−n � r,

so x ∈ B(a, r). Moreover, recall from our construction that all of these endpoints of intervals
are actually in E, so the endpoint x in particular is an element of B(a, r) ∩ E distinct from
a. Thus a is a limit point of E. (Note that technically, to show a is a limit point, we are
supposed to show that any open set U containing a also contains a point of E distinct from
a. We have only done this when U = B(a, r). Can you explain why this is sufficient?)
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• The interior of E is empty. To see this, suppose that a ∈ E and consider an open ball B(a, r)
centered at a. As above, let n be big enough so that 3−n � r. Then, since En is the union of
several disjoint closed intervals, let In be the interval containing a, and note that we must
have In ⊆ B(a, r). But then if we pick a point x in the middle third of In, then x /∈ En+1,
which means that x /∈ E. But x is a point of B(a, r), since all of In is contained in B(a, r),
so we see that the open ball B(a, r) is not entirely contained in E. In other words, a cannot
be an interior point of E.

You will have the opportunity to prove more properties of the Cantor set on problem set 3.

4 Sample Problems
Problem 1. Show that the Cantor set E is compact.

Hint. Do this by applying the Heine-Borel theorem. Boundedness should be easy: in fact, you
should even be able to compute diam(E) precisely. To see that E is closed, explain why each En

is closed, and then explain why that implies that E is also closed.

Problem 2. Show that every point of the Cantor set E is a limit point of [0, 1]r E.

Hint. This is basically the same statement as one of the properties we already proved about the
Cantor set above. Which property? Why?
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