
Metric Spaces

1 Definition
A metric (sometimes also called a distance function) on a set X is a function d : X × X → R
satisfying the following axioms for all x, y, z ∈ X.

(M1) (Positivity) d(x, y) ≥ 0, and d(x, x) = 0.

(M2) (Symmetry) d(x, y) = d(y, x).

(M3) (Triangle inequality) d(x, z) ≤ d(x, y) + d(y, z).

(M4) If d(x, y) = 0, then x = y.

A metric space is a set X equipped with a metric d. (A function satisfying all of the axioms except
(M4) is said to be a pseudometric, and a set together with a pseudometric is a pseudometric space,
but we won’t pursue this degree of generality any further.) See the accompanying PDF for many
examples of metric spaces.

2 Open Subsets
Let X be a metric space. An open ball of some positive radius r about some point a ∈ X is the set

B(a, r) := {x ∈ X : d(a, x) � r}.

Let E be a subset of X. Then a point a is an interior point of E if there exists some positive real
number r such that B(a, r) ⊆ E. The interior of E, denoted E◦, is the set of interior points of
E, and we say that E is an open subset of X if E = E◦. In other words, E is open if and only if
every point of E is an interior point of E. If this terminology is to make any sense, open balls had
better be open. Before proceeding any further, let us verify that this indeed the case.

Lemma 2.1. Let X be a metric space. Then every open ball B(a, r) is an open subset of X.

Proof. Suppose b ∈ B(a, r). Then d(a, b) � r, so let s := r− d(a, b) and consider B(b, s). Then for
any x ∈ B(b, s), we have

d(a, x) ≤ d(a, b) + d(b, x) = (r − s) + d(b, x) � (r − s) + s = r

which means that x ∈ B(a, r). In other words, B(b, s) ⊆ B(a, r), so B(a, r) is open.
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Example 2.2. Inside R with the euclidean metric, the set E1 := [0,∞) is not open since there is
no open ball around 0 which is entirely contained in E1. On the other hand, the set E2 := (0,∞)
is open. Indeed, for any a ∈ E2, consider B(a, a). Then for any x ∈ B(a, a), we must have x 
 0,
since if x ≤ 0, then

|a− x| = a− x ≥ a

which contradicts the choice of x ∈ B(a, a). Thus x 
 0, so x ∈ E, which shows that B(a, a) ⊆ E.
The same argument also shows that the interior E◦1 of E1 is equal to E2.

Example 2.3. In any metric space X, the sets ∅ and X are both open. This is obvious.

Example 2.4. Openness depends on the ambient metric space. Let X := [0,∞). Then X is an
open subset of itself, as we noted in the previous example, but it is not an open subset of R, as we
noted two examples prior. Stated differently, openness is a property of subsets of a metric space,
rather than of metric spaces themselves.

Example 2.5. Consider R2 and the origin 0 ∈ R2. Let us think about what happens to the open
balls B(0, 1) as we change the metric we have in mind on R2.

• With the euclidean metric, we get an open circle shape.

• With the Manhattan metric, we get an open diamond shape.

• With the maximum metric, we get an open square shape.

Lemma 2.6. Let X be a metric space.

(a) Let I be an arbitrary set indexing a collection (Ui)i∈I of open subsets of X. Then U := ⋃
i∈I Ui

is also an open subset of X.

(b) If U and V are open subsets of X, then U ∩ V is also an open subset of X.

Proof. For part (a), suppose a ∈ U . Then there exists some i ∈ I such that a ∈ Ui. Since Ui is
open, there exists some open ball B(a, r) contained in Ui, which means that B(a, r) ⊆ U . Thus a

is also an interior point of U , so U is open.
For part (b), suppose a ∈ U ∩V . Since U and V are both open, there exists some positive reals

r and s such that B(a, r) ⊆ U and B(a, s) ⊆ V . Let t := min{r, s}. Then B(a, t) ⊆ B(a, r) ⊆ U

and B(a, t) ⊆ B(a, s) ⊆ V , so B(a, t) ⊆ U ∩V . Thus a is an interior point of U ∩V , so we conclude
that U ∩ V is open.

Corollary 2.7. If U1, . . . , Un are all open subsets of a metric space X, then U1 ∩ · · · ∩Un is open.

Example 2.8. Infinite intersections need not be open. For example, consider X := R with the
euclidean metric and let Un := B(0, 1/n). Then Un is open, but

⋂
n∈Nr{0}

Un = {0}

and this is not open. You should be able to prove both that ⋂Un = {0} and that {0} is not open.
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Example 2.9. Let X be a set with the discrete metric. Then for any a ∈ X we have

B(a, 1/2) = {a}

so the singleton set {a} is open by lemma 2.1. But then, since arbitrary unions of open sets are
open, we can immediately conclude that all subsets of X are open.

Lemma 2.10. Let E be a subset of a metric space X. Then its interior E◦ is the largest subset of
E which is open inside X.

Proof. Let us first show that E◦ is open inside X. Suppose a ∈ E◦. Then there exists some open
ball B(a, r) entirely contained inside E. But then for every x ∈ B(a, r), we know that x is an
interior point of B(a, r) by lemma 2.1, so there exists some ball B(x, s) ⊆ B(a, r), which in turn
implies that B(x, s) ⊆ E. This means that x is an interior point of E also, so B(a, r) ⊆ E◦. Thus
every point of E◦ is an interior point of E◦, so E◦ is open.

Next, suppose that U is some subset of E which is open inside X. Then for any a ∈ U , there
exists some open ball B(a, r) ⊆ U , but U ⊆ E so actually B(a, r) ⊆ E. This means that a is an
interior point of E, so a ∈ E◦. Thus U ⊆ E◦. Thus E◦ is the largest subset of E which is open
inside X.

3 Sample Problems
Problem 1. Which of the following functions defines a metric on R?

d1(x, y) = (x− y)2

d2(x, y) =
√
|x− y|

d3(x, y) =
∣∣∣x2 − y2

∣∣∣
d4(x, y) = |x− 2y|

d5(x, y) = |x− y|
1 + |x− y|

Solution. d3 is not a metric because d3(1,−1) = 0 even though 1 6= −1. d4 is not a metric
because d4(1, 0) = 1 but d4(0, 1) = 2. d1 is not a metric because d1(2, 0) = 4 is greater than
d1(2, 1) + d1(1, 0) = 1 + 1 = 2, so the triangle inequality fails.

Both d2 and d5 are metrics. To see this, let ϕ : [0,∞) → [0,∞) be an increasing and concave
function such that ϕ(0) = 0, and consider the function dϕ(x, y) = ϕ(|x− y|). For example, if we
take ϕ(t) =

√
t then dϕ = d2, and if we take ϕ(t) = t/(1 + t) then dϕ = d5. We will prove that dϕ

must be a metric. I will leave it to you to verify that (M1), (M2) and (M4) are satisfied. For the
triangle inequality (M3), suppose we have x, y, z ∈ R. Then, since ϕ is increasing,

dϕ(x, z) = ϕ(|x− z|) ≤ ϕ(|x− y|+ |y − z|).

Let ` be the function whose graph is the line going through the points (0, 0) and (|x− y| +
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|y − z| , ϕ(|x− y|+ |y − z|)). Then

ϕ(|x− y|+ |y − z|) = `(|x− y|+ |y − z|) ≤ ϕ(|x− y|+ ϕ(|y − z|)

since the graph of the function ϕ must lie entirely above the secant line ` due to concavity of ϕ.
This proves the triangle inequality for dϕ.

Problem 2. What is the interior of Q as a subset of R with the euclidean metric?

Solution. The interior is empty. Indeed, for any a ∈ Q, suppose there existed some open ball
B(a, r) ⊆ Q. We showed last time that between the two real numbers a and a+ r, there must exist
some irrational number x. But clearly x ∈ B(a, r), so this contradicts B(a, r) ⊆ Q. Thus no point
of Q is an interior point, so the interior is empty.
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