
Applications of Differentiation

1 L’Hôpital’s Rule
Here’s a theorem you probably remember from when you took calculus.

Theorem 1.1 (L’Hôpital’s Rule). Let S be a nonempty connected open subset of R and suppose
that a = sup S or a = inf S. Furthermore, suppose that f and g are differentiable functions S → R,
that g and g′ are both nonzero on S, and that

lim
x→a

f ′(x)
g′(x) = L

for some extended real number L. If either

lim
x→a

f(x) = lim
x→a

g(x) = 0 or lim
x→a
|g(x)| =∞,

then
lim
x→a

f(x)
g(x) = L.

Proof. Let us go ahead and assume that a = inf S, since the proof when a = sup S is analogous.
We make the following two claims.

(A) If −∞ ≤ L �∞ and L � L1, then there exists some a1 ∈ S such that

f(x)
g(x) � L1

for all x ∈ (a, a1).

(B) If −∞ � L ≤ ∞ and L2 � L, then there exists some a2 ∈ S such that

L2 �
f(x)
g(x)

for all x ∈ (a, a2).

Given these claims, we can complete the proof as follows. If L is finite and ε 
 0, then we can apply
claim (A) with L1 := L + ε and claim (B) with L2 := L − ε in order to find numbers a1, a2 ∈ S
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satisfying the above properties. Then taking a0 := min{a1, a2}, we see that we have∣∣∣∣∣f(x)
g(x) − L

∣∣∣∣∣ � ε

for all x ∈ (a, a0). This says precisely that

lim
x→a

f(x)
g(x) = L.

If L = −∞, then claim (A) together with the fact that L1 can be arbitrarily negative completes
the proof, and if L = ∞, then claim (B) together with the fact that L2 can be arbitrarily large
completes the proof.

Thus it suffices to prove claims (A) and (B). Since the proof of (2) is very similar the proof of
(A), we’ll only prove (A). Suppose we have L � K � L1. Then we know that there exists some
b ∈ S such that

f ′(x)
g′(x) � K

for all x ∈ (a, b). Note that if x and y are distinct elements of (a, b) with x � y, then the generalized
mean value theorem (together with the fact that g is injective since g′ never vanishes on S) shows
that there is some c ∈ (x, y) such that

f(x)− f(y)
g(x)− g(y) = f ′(c)

g′(c)

which means that
f(x)− f(y)
g(x)− g(y) � K. (1)

Now if we are in the situation that

lim
x→a

f(x) = lim
x→a

g(x) = 0,

then taking the limit as x tends towards a in equation (1) shows us that

f(y)
g(y) ≤ K � L1

for all y ∈ (a, b), so we can take a1 := b and we are done. Suppose on the other hand that

lim
x→a
|g(x)| =∞.

It is a fact that g′ is either always positive or always negative on S. This follows from the “in-
termediate value theorem for derivatives” (see theorem 29.8 in Ross or theorem 5.12 in Rudin).
We haven’t proved this, and I don’t really want to prove it just for this small step in the proof:
notice, for example, that if we happen to know that g′ is continuous, then this follows from the
usual intermediate value theorem. Hopefully this omission is not too egregious.
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Let us assume that g′ is always negative on S, and the other case is analogous. Then the only
way to have limx→a |g(x)| = ∞ is to have limx→a g(x) = ∞. Moreover, since g never vanishes on
S, we know that we must actually have that g is positive on all of S. Since g′ is negative, we know
that g is decreasing on S, so (g(x) − g(y))/g(x) is positive. Multiplying (1) by this quantity, we
see that

f(x)− f(y)
g(x) � K · g(x)− g(y)

g(x) .

Rearranging, we find that

f(x)
g(x) � K · g(x)− g(y)

g(x) + f(y)
g(x) = K + f(y)−Kg(y)

g(x) .

Holding y fixed and letting x tend towards a, we see that the fraction on the right hand side tends
towards 0. This means that there exists b′ ∈ S such that this fraction is less than L1 −K for all
x ∈ (a, b′). Then if we let a1 := min{b, b′}, we see that for all x ∈ (a, a1), we have that

f(x)
g(x) � L1.

2 Taylor’s Theorem
Let S be a connected open neighborhood of 0 and suppose a function f : S → R and that f is
differentiable at least n− 1 times on S for some positive integer n. We then define Rn : S → R by

Rn(x) = f(x)−
n−1∑
k=0

f (k)(0)
k! xk.

Note that if f is infinitely differentiable on S and lim Rn(x) = 0, then

f(x) =
∞∑

k=0

f (k)(0)
k! kk.

In other words, if f is infinitely differentiable and lim Rn(x) = 0, then f(x) is equal to its Taylor
series around 0 evaluated at x. We want to understand more precisely when this happens.

Theorem 2.1 (Taylor). Let S be a connected open neighborhood of 0 and suppose f : S → R is
differentiable at least n times on S for some positive integer n. For every nonzero x ∈ S, there
exists some a in between 0 and x such that

Rn(x) = f (n)(a)
n! xn.

Proof. Fix a nonzero x ∈ S. Note that there exists a unique number M such that

f(x) =
n−1∑
k=0

f (k)(0)
k! xk + M

n! xn.
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We are trying to show that M = f (n)(a) for some a between 0 and x. To prove this, consider the
function g : S → R given by

g(t) =
n−1∑
k=0

f (k)(0)
k! tk + M

n! tn − f(t).

If you stare at the above formula for a minute, you’ll see that for any nonnegative integer k ≤ n−1,
we have g(k)(0) = 0. Moreover, we also have g(x) = 0 by our choice of M . Since g(0) = g(x) = 0,
Rolle’s theorem tells us that there exists some x1 between 0 and x such that g′(x1) = 0. Then,
since g′(0) = g′(x1) = 0, Rolle’s theorem applied again tells us that there is an x2 between 0 and
x1 such that g′′(x2) = 0. We keep going on this way, until we find an xn such that g(n)(xn) = 0.
But this means exactly that M = f (n)(xn), so taking a = xn completes the proof.

Example 2.2. We have seen before that the alternating harmonic series ∑(−1)n/n converges,
but we haven’t yet calculated the value of its limit. Here is one way to do this, assuming familiar
properties of the natural logarithm log. Define f : (−1,∞)→ R by f(x) = log(1 + x). Then

f ′(x) = (1 + x)−1

f ′′(x) = −(1 + x)−2

f (3) = 2(1 + x)−3

...
f (n) = (−1)n+1(n− 1)!(1 + x)−n

This means that f (n) = (−1)n+1(n− 1)!, so the Taylor series of f about 0 is

∞∑
k=0

f (k)(0)
k! xk = 0 +

∞∑
k=1

(−1)n+1(n− 1)!
n! xn =

∞∑
k=1

(−1)n+1xn

n
.

Notice that this is exactly the alternating harmonic series when x = 1. By Taylor’s theorem, for
each n, there exists some an between 0 and 1 such that

Rn(1) = f (n)(an)
n! = (−1)n+1

(1 + an)nn
,

which means that
|Rn(1)| = 1

(1 + an)nn
≤ 1

n

for all n. This means that lim Rn(1) = 0 by the squeeze theorem, so the alternating harmonic series
(ie, the Taylor series for f evaluated at x = 1) converges to f(1) = log(2).

Example 2.3. One usually defines the exponential function using the power series ∑xn/n!. I want
to explain why one would think to write this formula down as an application of Taylor’s theorem.
Suppose I’m looking for a function f : R→ R such that f ′(x) = f(x) for all x ∈ R. Notice that if
f is some such function, then f + c will also be such a function for any constant c, so we’re going
to need to pin things down a bit more (as you might remember from solving differential equations
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in math 54 anyway). So, let’s also say that we want this function f to satisfy f(0) = 1.
Notice that f ′ = f means that f ′′ = f ′ = f , and so forth, so f must be infinitely differentiable.

Moreover, since f is differentiable, it is also continuous in particular, so any compact interval
[−R, R], f must be bounded by some constant C. But then f (n) = f so actually we have

‖f (n)‖sup = ‖f‖sup ≤ C

for all n ∈ N, where the ‖− ‖sup is taken on the interval [−R, R]. Thus problem 4 guarantees that
Rn(x) = 0, which means that f is equal to its Taylor series on [−R, R]. But R is arbitrary, so f is
actually equal to its Taylor series everywhere on R. But we can compute the Taylor series, since
we know that f(0) = 1, so f ′(0) = f(0) = 1, so f ′′(0) = f ′(0) = 1, and so forth, so

f(x) =
∞∑

k=0

f (k)(0)
k! xk =

∞∑
k=0

xk

k! .

3 Sample Problems
Problem 1. Calculate

lim
x→0

1− ex

xex + ex − 1 .

Problem 2. Calculate
lim

x→∞

p(x)
ex

.

where p is a polynomial function.

Problem 3. Prove the following “baby version” of L’Hôpital’s rule directly (without appealing to
the general version). Let S be a neighborhood of a point a ∈ R and suppose f and g are functions
S → R such that f and g are differentiable at a, f(a) = g(a) = 0, and g′(a) 6= 0. Then

lim
x→a

f(x)
g(x) = f ′(a)

g′(a) .

Hint. Observe that for all x ∈ S r {a}, we have

f(x)
g(x) = f(x)− 0

g(x)− 0 = f(x)− f(a)
g(x)− g(a) =

f(x)−f(a)
x−a

g(x)−g(a)
x−a

.

Problem 4. Let S be a connected open neighborhood of 0 and suppose f : S → R is infinitely
differentiable on S. If there exists a constant C such that ‖f (n)‖sup ≤ C for all n ∈ N, show that

lim
n→∞

Rn(x) = 0.

Reference. Ross, corollary 31.4.
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Problem 5. Consider the function f : R→ R defined by

f(x) =

e−1/x if x 
 0
0 if x ≤ 0.

Show that f is infinitely differentiable, and that f (n)(0) = 0 for all x ∈ R and n ∈ N. Remark.
Thus, the Taylor series of f around 0 is just constantly 0. Clearly f is not itself equal to 0, so this
is an example of a function that is infinitely differentiable but is not equal to its Taylor series.

Reference. Ross, section 31, example 3.
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