
Uniform Continuity

1 Uniform Continuity
Let X and Y be metric spaces and f : X → Y a continuous function. Then f is uniformly
continuous if for every ε 
 0, there exists δ 
 0 such that dY (f(x), f(x′)) � ε whenever dX(x, x′) �
δ.

Remark 1.1. It might be helpful to observe the logical forms of the ε-δ characterization of
continuity juxtaposed against the logical form of the definition of uniform continuity.

Continuity : ∀ε 
 0 ∀x ∈ X ∃δ 
 0 ∀x′ ∈ X (x′ ∈ B(x, δ) =⇒ f(x′) ∈ B(f(x), ε))
Uniform continuity : ∀ε 
 0 ∃δ 
 0 ∀x ∈ X ∀x′ ∈ X (x′ ∈ B(x, δ) =⇒ f(x′) ∈ B(f(x), ε))

The only difference is that the order of ∀x ∈ X and ∃δ 
 0 are switched, but this matters. In the
former, the δ depends on the point x. In the latter, the same δ works for all points x.

Example 1.2. Let X := [1,∞) and let Y := R and consider the function f : X → Y given by

f(x) = 1
x2 .

This function is uniformly continuous. Before checking this, let us make a calculation.

f(x)− f(x′) = x′2 − x2

x2x′2 = (x′ − x)(x′ + x)
x2x′2 =

(
x′ + x

x2x′2

)
(x′ − x) =

( 1
x2x′ + 1

xx′2

)
(x′ − x).

Notice that x, x′ ∈ X means that x, x′ ≥ 1, so the parenthetical quantity is at most equal to 2. In
other words,

|f(x)− f(x′)| ≤ 2 |x− x′| .

Now given any ε 
 0, let δ := ε/2. Then for any x, x′ ∈ X such that |x− x′| � δ, we see that

|f(x)− f(x′)| ≤ 2 |x− x′| � 2δ = ε.

Lemma 1.3. Let X and Y be metric spaces and let f : X → Y be a uniformly continuous function.
If (xn)n∈N is a Cauchy sequence in X, then (f(xn))n∈N is a Cauchy sequence in Y .

Proof. Fix ε 
 0. Then by uniform continuity there exists δ 
 0 such that dY (f(x), f(x′)) � ε

whenever dX(x, x′) � δ. Since (xn)n∈N is Cauchy, there exists an N such that for all m,n ≥ N we
have dX(xm, xn) � δ. Then dY (f(xm), f(xn)) � ε for all m,n ≥ N , so (f(xn))n∈N is Cauchy.
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Example 1.4. Let X := (0,∞) and Y := R and consider the function f : E → Y given by f(x) =
1/x. Notice that the sequence (xn)n∈N where xn = 1/(n + 1) is Cauchy in X. But f(xn) = n + 1
and clearly the sequence (n + 1)n∈N is not Cauchy in Y , so lemma 1.3 shows that f cannot be
uniformly continuous.

Proposition 1.5. Let X be a metric space, E a dense subset, Y a complete metric space, and
f : E → Y a uniformly continuous function. Then there exists a unique continuous function
f̃ : X → Y such that f̃(x) = f(x) for all x ∈ E. Moreover, f̃ is even uniformly continuous.

Proof. The uniqueness assertion will follow as a consequence of a problem that will be assigned on
problem set 6. To show existence, we begin with some observations. First, suppose that (xn)n∈N is
a sequence in E converging to some point a ∈ X. Then in particular (xn)n∈N is Cauchy, so lemma
1.3 guarantees that (f(xn))n∈N is a Cauchy sequence in Y . But Y is complete, so lim f(xn) exists.

Next, suppose that (xn)n∈N and (x′
n)n∈N are both sequences in E converging to the same point

a ∈ X. Then in fact we must have lim f(xn) = lim f(x′
n). To see this, consider the sequence

(x′′
n)n∈N = (x0, x

′
0, x1, x

′
1, x2, x

′
2, . . . ).

This is a sequence in E which clearly still converges to a. Thus, by what we observed above, we know
that lim f(x′′

n) exists. Moreover (f(xn))n∈N and (f(x′
n))n∈N are both subsequences of (f(x′′

n))n∈N,
so they both converge to the same limit as well.

Now for any point a ∈ X, we know that since E is dense in X there exists a sequence (xn)n∈N

in E such that lim xn = a. We then define

f̃(a) := lim
n→∞

f(xn).

This limit exists by our first observation, and it is independent of the choice of sequence (xn)n∈N by
our second observation. In particular, whenever a ∈ E, we can simply take the constant sequence
(xn)n∈N in which xn = a for all n ∈ N and then we see clearly that f̃(a) = f(a).

We now need to show that f̃ is uniformly continuous. (Technically, we first need to show that
f̃ is continuous, but uniform continuity implies continuity, so we don’t actually need to do this
separately.) To see this, fix ε 
 0. Since f is uniformly continuous, there exists δ 
 0 such that
dY (f(x), f(x′)) � ε/3 whenever x, x′ ∈ E are points such that dX(x, x′) � δ.

Suppose a, a′ ∈ X are points of X such that dX(a, a′) � δ/3. Choose sequences (xn)n∈N and
(x′

n)n∈N converging to a and a′, respectively. Then there exists an N0 such that xn ∈ BX(a, δ/3)
for all n ≥ N and an N ′

0 such that x′
n ∈ BX(a′, δ/3) for all n ≥ N ′. Let M0 = max{N0, N

′
0}. Then

notice that for all n ≥M0, we have

dX(xn, x
′
n) ≤ dX(xn, a) + dX(a, a′) + dX(a′, x′

n) � δ

which means that dY (f(xn), f(x′
n)) � ε/3.

Since f̃(a) = lim f(xn), there exists some N1 such that dY (f̃(a), f(xn)) � ε/3 for all n ≥
N . Similarly there exists N ′

1 such that dY (f̃(a′), f(xn) � ε/3 for all n ≥ N ′
1. Then let M1 =
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max{M0, N1, N
′
1}. For n ≥M1, observe that

dY (f̃(a), f̃(a′)) ≤ dY (f̃(a), f(xn)) + dY (f(xn), f(x′
n)) + dY (f(x′

n), f̃(a′)) � ε.

In other words, we have just shown that whenever a and a′ are elements of X whose distance is less
than δ/3, the distance between f̃(a) and f̃(a′) is less than ε. Thus f̃ is uniformly continuous.

Example 1.6. We can now prove that the function from example 1.4 is not uniformly continuous
a different way. Let X := [0,∞), E := (0,∞) and Y = R. Consider the function f : E → Y given
by f(x) = 1/x. Then f cannot be uniformly continuous. Indeed, notice that E is dense in X, so
if f were uniformly continuous, there would exist a continuous function f̃ : X → R such that
f̃(x) = f(x) for all x ∈ E. But clearly

lim
x→0

f̃(x) = lim
x→0

f(x)

does not exist.

2 Sample Problems
Problem 1. Let Y := R. For each of the following metric spaces X and functions f : X → Y ,
determine if f is uniformly continuous.

(a) X = (0, 3) and f(x) = 1/(x− 3).

(b) X = (3,∞) and f(x) = 1/(x− 3).

(c) X = [4,∞) and f(x) = 1/(x− 3).

Hint for (c). Observe that

f(x)− f(x′) = 1
x− 3 −

1
x′ − 3 = (x− 3)− (x′ − 3)

(x− 3)(x′ − 3) = x− x′

(x− 3)(x′ − 3)

and that the smallest possible value of the denominator is 1.

Problem 2. Let X := Z regarded as a metric space by restricting the euclidean metric on R.
Show that any continuous function f : X → Y into any metric space Y is uniformly continuous.
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