
Continuous Functions

1 Notation
There will now be many metric spaces running around. So, when there can be ambiguity, we will
write dX for the metric on a metric space X and BX(a, r) for the open ball in X of radius r
centered at a ∈ X. Also, while it is not strictly necessary, I find it is useful to be familiar with the
word “neighborhood” at this point.

Let X be a metric space and a ∈ X a point. A neighborhood of a is a subset U of X in which
a is an interior point. Note that U need not itself be open in X. If it does happen to be open in
X, we say that U is an open neighborhood of a.

Example 1.1. (−1, 1), [−1, 1], (−0.5, 72] and (−1, 1.2]∪(72, 100] are all examples of neighborhoods
of the point a = 0 in the metric space X = R with the euclidean metric. Only the first one of these
is an open neighborhood.

Remark 1.2. Rudin uses the word “neighborhood” for the concept we have been calling “open
ball.” Rudin’s usage is not standard: the definition of “neighborhood” given above is what most
people mean when they say “neighborhood.”

2 Limits of Functions
Let X and Y be metric spaces and, for some fixed point a ∈ X, let f : Xr{a} → Y be a function.
We say that

lim
x→a

f(x) = b

if, whenever U is a neighborhood of b in Y , then f−1(U) ∪ {a} is also a neighborhood of a in X.

Example 2.1. Let X = Y = R and a = 0 and consider the function f : R r {0} → R given by
the formula

f(x) = x2.

Let’s show that
lim
x→0

f(x) = 0.

Let U be a neighborhood of b := 0 in Y . In other words, b is an interior point of U , so there
exists an open ball BY (b, ε) ⊆ U . Now consider the open ball V := BX(a,

√
ε). Then for any
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x ∈ V ∩ E r {a} = V r {0}, we have

d(b, f(x)) = |f(x)| =
∣∣∣x2
∣∣∣ � (√

ε
)2

= ε

which means that f(x) ∈ BY (b, ε) ⊆ U . In other words, the entire open ball V is contained
in f−1(U) ∪ {a}, so a is an interior point of f−1(U) ∪ {a}. In other words, f−1(U) ∪ {a} is a
neighborhood of a.

Example 2.2. Let X and Y be metric spaces, a ∈ X a point and f : X r {a} → Y a function
such that

lim
x→a

f(x) = b.

By definition, we know that if U is a neighborhood of b, then f−1(U)∪{a} is a neighborhood of a.
But, even if U is an open neighborhood, it need not be that f−1(U)∪{a} is an open neighborhood
of a. To see this, let X = Y = R and a = 0 again, and consider the function f : X r {a} → Y

given by

f(x) =

1/2 if x ∈ [2, 3]
x2 if x /∈ [2, 3].

It’s easy to see that this function still has

lim
x→a

f(x) = 0

just like in the previous example. But, consider the open neighborhood U := BX(a, 1). Then

f−1(U) ∪ {a} = (−1, 1) ∪ [2, 3]

which is clearly not open. This is the reason for introducing the terminology “neighborhood of a”
instead of just sticking with “open set containing a.”

If we have metric spaces X and Y , a point a ∈ X and a function f : X → Y , we can “forget”
about the value of f at a and restrict f to a function X r {a} → Y . This means that it makes
sense to write

lim
x→a

f(x) = b

even if f is defined at a. Of course, this also means that the fact that

lim
x→a

f(x) = b

is totally independent of the value of f at a.

Example 2.3. Keep the same notation as in example 2.1, but now suppose that f : X → Y is
actually defined everywhere by the formula

f(x) =

x
2 if x 6= 0

1 if x = 0.
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The same proof as in example 2.1 shows that we still have

lim
x→0

f(x) = 0

even though f(x) 6= 0. In fact, the above would be true no matter what the value of f(x) was. It
could be 0, or 1, or 100...

Lemma 2.4. Let X and Y be metric spaces, a ∈ X a point and f : X r {a} → Y a function.
Suppose further that a is a limit point of X r {a}. If there exist points b and b′ in B such that

lim
x→a

f(x) = b and lim
x→a

f(x) = b′

then b = b′.

Proof. Suppose b 6= b′. Then there exist disjoint neighborhoods U and U ′ of b and b′, respec-
tively. But then f−1(U) ∪ {a} and f−1(U ′) ∪ {a} are both neighborhoods of a, which means their
intersection is a neighborhood of a also. But notice that

(f−1(U) ∪ {a}) ∩ (f−1(U ′) ∪ {a}) = f−1(U ∩ U ′) ∪ {a} = {a}

since U ∩ U ′ = ∅. This means that {a} is a neighborhood of a, which means that a cannot be a
limit point of X r {a}.

Lemma 2.5. Let X and Y be metric spaces, a ∈ X a point, and f : X r {a} → Y a function.
Then

lim
x→a

f(x) = b

for some b ∈ B if and only if
lim

n→∞
f(xn) = b

for every sequence (xn)n∈N in X r {a} which converges to a.

Proof. For the “only if” direction, let (xn)n∈N be a sequence in X r {a} converging to a and let
U be a neighborhood of b. Then f−1(U) ∪ {a} is a neighborhood of a, which means that there
exists an open ball V such that f(V r {a}) ⊆ U . Since lim xn = a, there exists an N ∈ N such
that xn ∈ V for all n ≥ N . Then xn ∈ V r {a}, so f(xn) ∈ U for all n ∈ N. This shows that
lim f(xn) = b.

For the “if” direction, suppose that

lim
x→a

f(x) 6= b.

This means that there exists a neighborhood U containing b for which f−1(U) ∪ {a} is not a
neighborhood of a. In other words, there does not exist any open ball around a which is mapped
by f entirely into U . Consider the open ball Vn := BX(a, 1/n). Then f does not map Vnr{a} into
U , so there exists some xn ∈ Vn r {a} such that f(xn) /∈ U . Now notice that lim xn = a, since for
any ε  0, there exists N such that 1/N � ε, and then, since xn ∈ Vn := BX(a, 1/n), we have that

d(a, xn) � 1/n ≤ 1/N � ε.
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But we cannot have lim f(xn) 6= b. Indeed, since U is a neighborhood of b, there exists some open
ball BY (b, r) ⊆ U , and we know that f(xn) /∈ U for all n, so f(xn) /∈ BY (b, r) for all n. In other
words, BY (b, r) is an example of an open set containing b which contains none of the points of the
sequence (f(xn))n∈N.

Example 2.6. Let X = Y = R, suppose a ∈ X and consider theh function f : X → Y given by
f(x) = 2x2 + 1. Let (xn)n∈N be any sequence in X r {a} converging to a. Then

lim
x→a

f(x) = lim
n→∞

f(xn) = lim
n→∞

2x2
n + 1 = 2a2 + 1 = f(a).

Functions like this, where the limit at every point is equal to the value of the function itself, are
called “continuous.”

3 Continuity
Let X and Y be metric spaces and let f : X → Y be a function. Then f is continuous at a ∈ X if

lim
x→a

f(x) = f(a).

Also we say that f is continuous if it is continuous at every a ∈ X.

Lemma 3.1. Let X and Y be metric spaces. A function f : X → Y is continuous at a point a ∈ X
if and only if, for every neighborhood U of f(a) in Y , the preimage f−1(U) is a neighborhood of a
in X.

Proof. By definition, we have that f is continuous at a if and only if, for every neighborhood U of
f(a), the preimage (f−1(U)r {a}) ∪ {a} is a neighborhood of a. But notice that

(f−1(U)r {a}) ∪ {a} = f−1(U).

Example 3.2. Consider the function f : R2 → R given by f(a, b) = a + b. We give R and R2

both the euclidean metric. We want to show that f is continuous. Notice that f being continuous
depends only on what subsets of R2 are open and not on the specific metric we put on R2, so
actually it is more convenient to put the maximum metric on R2 instead of the euclidean metric.

Fix a point (a, b) ∈ R2 and let U be a neighborhood of f(a, b) = a+ b. Then there exists some
ε  0 such that BR(f(a, b), ε) ⊆ U . Now notice that

BR2((a, b), ε/2) = BR(a, ε/2)×BR(b, ε/2)

so for any (x, y) in this open ball, we have

d(f(a, b), f(x, y)) = |(a+ b)− (x+ y)| ≤ |a− x|+ |b− y| � ε.

In other words, the open ball BR2((a, b), ε/2) is entirely contained in f−1(U), so f−1(U) is a
neighborhood of (a, b). This completes the proof of continuity.
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Now if (an)n∈N and (bn)n∈N are sequences in R converging to x and y, respectively, then
((an, bn))n∈N is a sequence in R2 converging to (a, b), which means that

lim
n→∞

(an + bn) = lim
n→∞

f(an, bn) = lim
(x,y)→(a,b)

f(x, y) = f(a, b) = a+ b.

Here, we used lemma 2.5 for the second equality and the fact that f is continuous for the third.
This proves the proposition concerning sums of limits we had left unproved before. For the other
parts of that proposition, see problem 3.

Corollary 3.3. Let X, Y and Z be metric spaces and let f : X → Y and g : Y → Z be functions.
Suppose f is continuous at a ∈ X and g is continuous at f(a). Then the composite h := g ◦ f is
continuous at a.

Proof. Let U be a neighborhood of h(a) = g(f(a)). Since g is continuous at f(a), we know
that g−1(U) is a neighborhood of f(a), and then since f is continuous at a, we also know that
f−1(g−1(U)) is a neighborhood of a. But notice that

f−1(g−1(U)) = (g ◦ f)−1(U) = h−1(U).

Corollary 3.4. Let X and Y be metric spaces. A function f : X → Y is continuous if and only
if f−1(U) is open in X for every open subset U of Y .

Proof. Suppose first that f is continuous and let U be an open subset of Y . We want to show that
every point a ∈ f−1(U) is an interior point of f−1(U). But notice that a ∈ f−1(U) means that
f(a) ∈ U , so U is a neighborhood of f(a), so f−1(U) is a neighborhood of a. In other words, a is
an interior point of f−1(U).

Conversely, suppose that f−1(U) is open for every open subset U ⊆ X. We want to show that
f is continuous at every point a ∈ X, so let U be any neighborhood of f(a). Then there exists
an open set U ′ containing f(a) such that U ′ ⊆ U , and by assumption we know that f−1(U ′) is
open. Then there exists an open ball BX(a, r) ⊆ f−1(U ′) ⊆ f−1(U). Thus a is an interior point of
f−1(U), so f−1(U) is a neighborhood of a and we are done.

Example 3.5. Let X = Y = R with the euclidean metric and consider the function

f(x) =

1 if x ∈ Q, and
0 if x /∈ Q.

Then for any irrational number a, notice that BY (0, 1/2) is a neighborhood of f(a) = 0, but
its preimage is the set of all irrational numbers, which is not a neighborhood of a. Similarly, for
every rational number a, notice that BY (1, 1/2) is a neighborhood of f(a) = 1, but its preimage
is the set of all rational numbers, which is again not a neighborhood of a. Thus, this function f is
discontinuous everywhere!
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4 Continuity and Connectedness
Lemma 4.1. Let X and Y be metric spaces and let f : X → Y be a continuous function. If X is
connected, then its image f(X) is also connected.

Proof. Suppose that U is a nonempty proper open and closed subset of f(X). Since U is open in
f(X), there exists an open set V in Y such that U = V ∩ f(X). Since f is continuous, we know
that f−1(V ) is open in X, but observe that f−1(V ) = f−1(U) since U = V ∩f(X). Similarly, since
f(X)r U is open in f(X), we conclude that

f−1(f(X)r U) = X r f−1(U)

is also open in X. Thus f−1(U) is an open and closed subset of X, so, since X is connected, we
have either f−1(U) = ∅ or f−1(U) = X. But notice that since U is a subset of f(X), having
f−1(U) = ∅ forces U = ∅, which is a contradiction. On the other hand, having f−1(U) = X forces
U = f(X), which again is a contradiction.

Theorem 4.2 (Intermediate value theorem). Suppose a � b are real numbers and f : [a, b] → R
is a continuous function such that f(a) � f(b). If f(a) ≤ y ≤ f(b), then there exists c ∈ [a, b] such
that f(c) = y.

Proof. We know that [a, b] is connected, so its continuous image f([a, b]) is also connected by lemma
4.1. Since f(a) and f(b) are elements of f([a, b]) and this is a connected subset of R, we know that
the entire interval [f(a), f(b)] is contained in f([a, b]). In particular, since y ∈ [f(a), f(b)], we have
that y ∈ f([a, b]) also, so there exists c ∈ [a, b] such that f(c) = y.

5 Sample Problems
Problem 1. Let X and Y be metric spaces and let f : X → Y be a function. Show that f is
continuous at a ∈ X if and only if, for all ε  0, there exists δ  0 such that d(a, x) � δ implies
d(f(a), f(x)) � ε.

Problem 2. Mimic the proof of example 3.2 in order to prove that each of the following functions
is continuous, where R and R2 have the euclidean metric.

(a) f : R→ R given by f(x) = −x.

(b) f : R2 → R given by f(x, y) = xy.

(c) f : Rr {0} → R given by f(x) = 1/x.

Problem 3. Consider the function f : R→ R defined by

f(x) =

x
2 sin(1/x) if x 6= 0

0 if x = 0.

Show that f is continuous at 0. Remark. We haven’t formally defined sin in this class yet, but in
any case, you can use the fact that |sin(x)| ≤ 1 for all x ∈ R.
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Problem 4. Let X be a set regarded as a metric space with the discrete metric.

(a) Show that any function f : X → Y into a metric space Y is continuous.

(b) Is it also true that any function f : Y → X from any metric space Y is also continuous?

Hint for (b). Let X = R with the discrete metric and let Y = R with the euclidean metric, and
consider the function f : X → Y given by f(x) = x. Is this continuous?

Problem 5. Determine all points a ∈ R where the function f : R → R defined by the following
formula is continuous.

f(x) =

x if x ∈ Q, and
0 if x /∈ Q.

Problem 6. Let X, Y and Z be metric spaces and let f : X → Y and g : X → Z be continuous
functions. Let Y ×Z be given the product metric defined on problem 10 in problem set 2. In other
words,

dX×Y ((y, z), (y′, z′)) = max{dY (y, y′), dZ(z, z′)}.

Show that the function g : X → Y × Z defined by g(x) = (f(x), g(x)) is continuous.

Proof sketch. Let
U := BY×Z((y, z), r) = BY (y, r)×BZ(z, r).

be an open ball in Y × Z. Then

g−1(U) = {x ∈ X : (f(x), gs(x)) ∈ U}
= {x ∈ X : f(x) ∈ BY (y, r) and g(x) ∈ BZ(z, r)}
= f−1(BY (y, r)) ∩ f−1(BZ(z, r)).

Since f and g are both continuous, this is an intersection of open subsets of X, so is itself open.
This shows that g−1(U) is open for every open ball U in X × Y . Why does this imply that g is
continuous?

Problem 7. Let I := [0, 1] and let f : I → I be a continuous function. Show that there exists
some a ∈ I such that f(a) = a.

Hint. Consider the function g : I → R given by g(x)− x and use the intermediate value theorem.
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