
Limit Superior and Limit Inferior

1 Limit Superior and Limit Inferior
Let (xn)n∈N be a sequence in R and let E0 be its set of subsequential limits in R. We proved
abstractly that E0 must be a closed subset of R. Now let

E :=
{

a ∈ R ∪ {±∞} : a = lim
k→∞

xnk
for some subsequence (xnk

)k∈N

}
.

Notice in particular that E ⊇ E0, but E may also contain ∞ or −∞ or possibly both. Since
(xn)n∈N has a monotonic subsequence, and the limit of a monotonic subsequence is always defined,
we see that E must be nonempty. We define the limit superior of E to be sup E, and we write

lim sup
n→∞

xn := sup E.

Dually, we define the limit inferior of E to be inf E, and we write

lim inf
n→∞

xn := inf E.

We then automatically have lim inf xn ≤ lim sup xn, but these values need not be equal.

Example 1.1. For our favorite sequence (1, 1/2, 1/3, . . . ), we have E = E0 = {0}. Thus its limit
superior and limit inferior are both 0.

Example 1.2. The sequence (xn)n∈N = (1,−1, 2,−2, 3,−3, . . . ) has an empty set of subsequential
limits. In other words, E0 = ∅. But (1, 2, 3, . . . ) is a subsequence and lim(1, 2, 3, . . . ) = ∞, and
similarly (−1,−2, . . . ) is a subsequence and lim(−1,−2,−3, . . . ) = −∞, so E = {∞,−∞}. Thus

lim inf
n→∞

xn = −∞ and lim sup
n→∞

xn =∞.

Example 1.3. The sequence (xn)n∈N = (0, 1, 0, 2, 0, 3, 0, 4, . . . ) has E0 = {0} and E = {0,∞}.
Thus

lim inf
n→∞

xn = 0 and lim sup
n→∞

xn =∞.

The first result we will prove is that lim sup xn is itself the limit of some subsequence, and
similarly with lim inf xn. We keep the notation E0 and E as above.

Lemma 1.4. If E0 is not bounded above, then ∞ ∈ E. Similarly, if E0 is not bounded below, then
−∞ ∈ E.
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Proof. Suppose E0 is not bounded above. To show that ∞ ∈ E, we must construct a subsequence
(xnk

)k∈N such that lim xnk
= ∞. We do this inductively. Let n0 := 0. Inductively, suppose we

have picked n0 � n1 � · · · � nk. Since E0 is not bounded above, we know that there exists a
subsequential limit a 
 max{k, xnk

}. The set U := (max{k + 1, xnk
},∞) is an open subset of R

containing a, so there exists some nk+1 
 nk such that xnk+1 ∈ U . This gives us a subsequence
(xnk

)k∈N, and we now claim that
lim

k→∞
xnk

=∞.

Indeed, notice first that this subsequence is clearly monotonically increasing. For any R, there
exists some integer K such that K ≥ R, and then for all k ≥ K we have

xnk
≥ xnK


 K ≥ R.

This shows that ∞ ∈ E. The proof when E0 is not bounded below is analogous.

Corollary 1.5. We always have lim sup xn ∈ E and lim inf xn ∈ E.

Proof. If lim sup xn := sup E ∈ R, then clearly sup E = sup E0, but E0 is closed in R, so

sup E = sup E0 ∈ E0 ⊆ E.

Suppose sup E = ∞. If E0 is bounded above, then the only way to have sup E = ∞ is to have
∞ ∈ E, so we are done. If E0 is not bounded above, then by lemma 1.4 we have∞ ∈ E again and
we are done. Finally, suppose sup E = −∞. We already noted that E is nonempty, so the only
way to have sup E = −∞ is to have E = {−∞}, so again we are done. The proof for infimums is
analogous.

2 Sample Problems
Problem 1. For any a 
 lim sup xn, show that there exists some N ∈ N such that xn � a for all
n ≥ N . (Dually, for any a � lim inf xn, there exists some N ∈ N such that xn 
 a for all n ≥ N .)

Proof. Suppose for a contradiction that there exists some a 
 lim sup xn := sup E such that xn ≥ a

for infinitely many n. Pick out the subsequence of all terms which are greater than or equal to a,
and then that subsequence has a monotonic subsequence, which we’ll call (xnk

)k∈N. In other words,
(xnk

)k∈N is a monotonic subsequence of (xn)n∈N such that xnk
≥ a for all k. This means that

a ≤ inf{xnk
: k ∈ N} ≤ sup{xnk

: k ∈ N}.

Thus, it doesn’t matter whether this sequence is monotonically increasing or monotonically de-
creasing, what have is a subsequence (xnk

)k∈N such that

b := lim
k→∞

xnk
≥ a 
 sup E.

This is a contradiction, because b ∈ E by definition of E.
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Problem 2. Suppose (xn)n∈N is a sequence of nonzero numbers which converges to a positive
number x. Then for any sequence (yn)n∈N, show that

lim sup
n→∞

xnyn = x lim sup
n→∞

yn.

Proof. By corollary 1.5, there exists a subsequence (ynk
)k∈N such that lim ynk

= lim sup yn. Then
(xnk

)k∈N is a subsequence of a convergent subsequence, so it also converges to x and

lim xnk
ynk

= x lim ynk
= x lim sup yn.

Thus x lim sup yn is a subsequential limit of (xnyn)n∈N, so lim sup xnyn ≥ x lim sup yn. Note that,
depending on whether lim ynk

is infinite or not, we have used two different theorems for the second
equality.

For the reverse inequality, use corollary 1.5 again to choose a subsequence (xnk
ynk

)k∈N such
that lim sup xnyn = lim xnk

ynk
. Then (ynk

)k∈N is a subsequence of (yn)n∈N and

ynk
= xnk

ynk

xnk

.

The numerator converges to lim sup xnyn and the denominator to the nonzero value x, so lim ynk
=

(lim sup xnyn)/x, which shows that lim sup yn ≥ (lim sup xnyn)/x. Now multiply through by x.
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