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1 Limit Superior and Limit Inferior

Let (z,)nen be a sequence in R and let Ey be its set of subsequential limits in R. We proved
abstractly that £y must be a closed subset of R. Now let

E = {a eRU{+oo}:a= klim x,, for some subsequence (:L‘nk)keN} :
—00

Notice in particular that £ O Ej, but E may also contain co or —oo or possibly both. Since
(n)nen has a monotonic subsequence, and the limit of a monotonic subsequence is always defined,
we see that F must be nonempty. We define the limit superior of E to be sup E, and we write

limsup x,, := sup F.
n—oo

Dually, we define the limit inferior of E to be inf E, and we write
liminf z,, := inf F.
n—oo

We then automatically have liminf x,, < limsup x,, but these values need not be equal.

Example 1.1. For our favorite sequence (1,1/2,1/3,...), we have E = Ey = {0}. Thus its limit
superior and limit inferior are both 0.

Example 1.2. The sequence (z,)neny = (1, —1,2,—2,3,—3,...) has an empty set of subsequential
limits. In other words, Ey = 0. But (1,2,3,...) is a subsequence and lim(1,2,3,...) = oo, and

similarly (—1,—2,...) is a subsequence and lim(—1, -2, —-3,...) = —o0, so E = {00, —o0}. Thus
liminf z,, = —oc0 and lim sup x,, = co.
n—oo n—oo

Example 1.3. The sequence (x,)nen = (0,1,0,2,0,3,0,4,...) has Ey = {0} and F = {0,00}.
Thus

liminf z,, = 0 and limsup z,, = .
n—00 n—00

The first result we will prove is that limsup x,, is itself the limit of some subsequence, and

similarly with liminf x,,. We keep the notation Ey and E as above.

Lemma 1.4. If Ey is not bounded above, then oo € E. Similarly, if Ey is not bounded below, then
—o0 € E.



Proof. Suppose Ej is not bounded above. To show that oo € F, we must construct a subsequence
(@n, Jken such that limx,, = oco. We do this inductively. Let ny := 0. Inductively, suppose we
have picked ng < ny < -+ < nyg. Since Ej is not bounded above, we know that there exists a
subsequential limit a > max{k,z,, }. The set U := (max{k + 1,x,, },00) is an open subset of R
containing a, so there exists some ngy > ng such that x,, ., € U. This gives us a subsequence
(@n, Jken, and we now claim that

lim z,, = oco.
k—oco Tk

Indeed, notice first that this subsequence is clearly monotonically increasing. For any R, there
exists some integer K such that K > R, and then for all £ > K we have

T, = Tny > K > R.
This shows that co € E. The proof when FEj is not bounded below is analogous. O]

Corollary 1.5. We always have limsupx, € E and liminfz, € E.

Proof. If limsup x,, ;= sup ¥ € R, then clearly sup £ = sup Ejy, but Ej is closed in R, so
suplEl =sup by € Ey C E.

Suppose sup E = oo. If Ejy is bounded above, then the only way to have sup £ = oo is to have
oo € F, so we are done. If Ej is not bounded above, then by lemma 1.4 we have oo € F again and

we are done. Finally, suppose sup £ = —oo. We already noted that E is nonempty, so the only
way to have sup £ = —o0 is to have E' = {—o0}, so again we are done. The proof for infimums is
analogous. O]

2 Sample Problems

Problem 1. For any a > limsup x,,, show that there exists some N € N such that x,, < a for all
n > N. (Dually, for any a < liminf z,,, there exists some N € N such that z,, > a for all n > N.)

T

Proof. Suppose for a contradiction that there exists some a > lim sup z,, := sup E such that z,, > a
for infinitely many n. Pick out the subsequence of all terms which are greater than or equal to a,
and then that subsequence has a monotonic subsequence, which we’ll call (z,, )xen. In other words,
(@n, Jken 1s a monotonic subsequence of (z,,)nen such that x,, > a for all k. This means that

a < inf{z,, : k € N} <sup{z,, : k € N}.

Thus, it doesn’t matter whether this sequence is monotonically increasing or monotonically de-
creasing, what have is a subsequence (z,, )ren such that

b:= lim z,, > a>supk.

k—o00

This is a contradiction, because b € E by definition of E. O



Problem 2. Suppose (z,).en 1S a sequence of nonzero numbers which converges to a positive
number x. Then for any sequence (y,)nen, show that

lim sup x,,y, = x limsup y,.
n—oo n—oo
Proof. By corollary 1.5, there exists a subsequence (yn, )ren such that limy,, = limsupy,. Then
(@n, )ken is a subsequence of a convergent subsequence, so it also converges to x and

lim z,, yn, = zlimy,, = xlimsupy,.

Thus z limsup y,, is a subsequential limit of (x,y,)nen, so limsup x,y, > xlimsupy,. Note that,
depending on whether limy,,, is infinite or not, we have used two different theorems for the second
equality.

For the reverse inequality, use corollary 1.5 again to choose a subsequence (z,,Yn, )ken such
that lim sup z,,y, = im x,,, Y, . Then (y,, Jren is a subsequence of (y,)nen and
Yn,, 7%% .
The numerator converges to lim sup z, %, and the denominator to the nonzero value z, so lim y,, =
(lim sup z,y,,)/x, which shows that lim sup y,, > (limsup x,y,)/z. Now multiply through by z. [
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