
Sequences in R

1 General Facts
Proposition 1.1. Let (xn)n∈N and (yn)n∈N be sequences in R converging to x and y, respectively.

(a) lim(xn + yn) = x + y.

(b) lim(xnyn) = xy.

(c) lim(−xn) = −x.

(d) If x 6= 0 and xn 6= 0 for all n, then (x−1
n )n∈N converges to x−1.

We will prove proposition 1.1 later, because I think it’s less confusing to prove when we have
a bit more theory. For now, we’ll just use this result a lot.

Lemma 1.2 (Squeeze theorem). Suppose (xn)n∈N and (yn)n∈N are sequences of real numbers and
0 ≤ xn ≤ yn for all n. If lim yn = 0, then lim xn = 0 also.

The proof of the squeeze theorem 1.2 will be a problem on problem set 4.

2 Examples
Example 2.1. For any p 
 0, we have

lim
n→∞

1
np

= 0.

To see this, let U be an open set containing 0 and let ε be such that B(0, ε) ⊆ U . Then, using the
archimedean property, there exists some N such that 1/N � ε1/p. Then for all n ≥ N , we see that
1/n ≤ 1/N � ε1/p, so 1/np � ε. In other words, 1/np ∈ B(0, ε) ⊆ U for all n ≥ N .

Example 2.2. Consider the sequence (xn)n∈N where

xn = n4 − 2n + 7
3n4 + 2n2 + 2 .

Then we can write
xn =

1− 2
n3 + 7

n4

3 + 2
n2 + 2

n4

1



for all n ≥ 1. Using example 2.1, we see that lim(1/n4) = lim(1/n3) = lim(1/n2) = 0. Using
proposition 1.1, we see that

lim
n→∞

(
1− 2

n3 + 7
n4

)
= 1.

Similarly,
lim

n→∞

(
3 + 2

n2 + 2
n4

)
= 3.

Since this limit is nonzero, we can again use proposition 1.1 to conclude that lim xn = 1/3.

Example 2.3. For any a such that |a| � 1, we have

lim
n→∞

an = 0.

To see this, notice that |a|−1 
 1, so b := |a|−1 − 1 is positive and |a| = 1/(1 + b). Furthermore,
using the binomial theorem, we see that

(1 + b)n = 1 + nb + . . . + bn 
 nb

which means that |a|n � 1/nb. Now for any ε 
 0, use the archimedean property to find N ∈ N
such that 1/N � bε and note that for n ≥ N , we have

|a|n � 1
nb
≤ 1

Nb
� ε

so an ∈ B(0, ε).

Example 2.4. We have
lim

n→∞
n
√

n = 1.

To see this, let xn = n1/n − 1. Then proposition 1.1 implies that it is sufficient to show that
lim xn = 0. Notice that (1 + xn)n = n, which means that, for n ≥ 2, we have

n = (1 + xn)n ≥ 1 + nxn +
(

n

2

)
x2

n · · ·+ xn
n 


(
n

2

)
x2

n = n(n− 1)
2 x2

n.

Rearranging, we find that

xn �
√

2
n− 1 .

For any open ball B(0, ε), the archimedean property guarantees that there exists some N such
that 1/(N − 1) � ε2/2. Then for all n ≥ N , we have

0 ≤ xn �
√

2
n− 1 ≤

√
2

N − 1 � ε

which shows that xn ∈ B(0, ε) and completes the proof.
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Example 2.5. For any a 
 0, we have

lim
n→∞

n
√

a = 1.

To see this, let xn = a1/n − 1. Then proposition 1.1 implies that it is sufficient to show that
lim xn = 0. Now note that if a ≥ 1, then for all n ≥ a we have 1 ≤ a1/n ≤ n1/n, which means that

0 ≤ xn ≤ n1/n − 1.

As we saw in example 2.4, we have lim(n1/n − 1) = 0. By the squeeze theorem 1.2, it follows that
lim xn = 0. Now suppose that 0 � a � 1. Then 1/a 
 1, so as we just saw, we have lim(1/a)1/n = 1.
We now apply proposition 1.1(d).

3 Infinite Limits
Let (xn)n∈N be a sequence in R. We say that

lim
n→∞

xn =∞

if, for every R ∈ R, there exists some N such that xn ≥ R for all n ≥ N . In informal words, we
are requiring that, no matter how big someone insists the terms of our sequence be, eventually the
entire sequence is bigger than that. Similarly, we say that lim xn = −∞ if lim(−xn) =∞.

Note that, even if either of these conditions is satisfied, (xn)n∈N is not a convergent sequence:
it is a special kind of non-convergent sequence. There are non-convergent sequences which do not
tend to ±∞. For example, (1,−1, 1,−1, . . . ) is a non-convergent sequence which is not tending
towards ±∞. Since sequences (xn)n∈N for which lim xn = ±∞ are not convergent, results about
convergent sequences (proposition 1.1, for example) do not apply to such sequences. Here is a list
of some properties of sequences with infinite limits.

Proposition 3.1. Let (xn)n∈N be a sequence in R such that lim xn =∞, and let (yn)n∈N be some
sequence with lim yn = y, where y is some value in the extended reals.

(a) If y 6= −∞, then lim(xn + yn) =∞.

(b) If y 
 0, then lim(xnyn) =∞.

(c) lim(x−1
n ) = 0.

The proof of proposition 3.1 is left as an exercise. If you get stuck, you can find a proof of (b)
in Ross, theorem 9.9, and of (c) in Ross, theorem 9.10. Theorem 9.10 in Ross is a bit stronger and
proves a kind of converse to proposition 3.1(c) as well.

4 Monotonic Sequences
Recall that all convergent sequences are bounded. The converse is not always true: for example,
the sequence (1,−1, 1,−1, . . . ) is bounded but clearly not convergent. A special class of sequences
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where the converse is true is the class of monotonic sequences. A sequence (xn)n∈N in R is mono-
tonically increasing if x0 ≤ x1 ≤ x2 ≤ · · · , and is monotonically decreasing if x0 ≥ x1 ≥ x2 ≥ · · · .
It is monotonic if it is either monotonically increasing or monotonically decreasing.

Lemma 4.1. If (xn)n∈N is a monotonically increasing sequence in R, then

lim
n→∞

xn = sup{xn : n ∈ N}.

Similarly, if (xn)n∈N is a monotonically decreasing sequence in R, then

lim
n→∞

xn = inf{xn : n ∈ N}.

Proof. Suppose (xn)n∈N is monotonically increasing and let a := sup E where E := {xn : n ∈ N}.
Consider first the case when E is bounded above, so that a ∈ R. For any open ball B(a, ε), note
that the number a− ε is not an upper bound for E since it is strictly less than the supremum a,
so there exists some N such that a − ε � xN ≤ a. But then for all n ≥ N , monotonicity implies
that

a− ε � xN ≤ xn ≤ a

so xn ∈ B(a, ε). Thus lim xn = a.
Now consider the case when E is not bounded above, so that a = ∞. Pick any real number

R. Since E is not bounded above, there exists some N such that xN ≥ R. Then monotonicity
guarantees that xn ≥ xN ≥ R for all n ≥ N , which shows that lim xn =∞.

Corollary 4.2. A monotonic sequence in R is convergent if and only if it is bounded.

5 Sample Problems
Problem 1. Let (xn)n∈N be a bounded sequence in R and let (yn)n∈N be a sequence converging
to 0. Show that (xnyn)n∈N converges to 0.

Hint. Let R := sup{|xn| : n ∈ N} + 1. Then, for any ε 
 0, there exists an N ∈ N such that
yn ∈ B(0, ε/R) for all n ≥ N ...

Problem 2. Let s0 := 1 and then define

sn+1 =
(

n + 1
n + 2

)
s2

n

for all n ∈ N. Show that lim sn = 0.

Proof. Note that s0 ≥ 1, so by induction it is clear that sn ≥ 0 for all n. Moreover, it is similarly
clear by induction that sn ≤ 1 for all n. We claim that sn+1 � sn for all n. For n = 0, we compute
directly that

s1 =
(1

2

)
12 = 1

2 � 1 = s0.
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Inductively, suppose sn+1 � sn. Then

sn+2 =
(

n + 2
n + 3

)
s2

n+1 ≤ sn+1

using the fact that n + 2 � n + 3 and that sn+1 ≤ 1 which means that s2
n+1 ≤ sn+1. This completes

the induction. We have thus proved that (sn)n∈N is a monotonically decreasing sequence and that
0 ≤ sn for all n ∈ N, so

lim
n→∞

sn = inf{sn : n ∈ N} ≥ 0.

In particular, (sn)n∈N is a convergent sequence. Let s := lim sn. Notice that

lim
n→∞

n + 1
n + 2 = 1

which means that, by taking lim in the recurrence equation sn+1 = ((n+1)/(n+2))s2
n and applying

proposition 1.1, we find that s = s2, which means that

0 = s2 − s = s(s− 1),

so either s = 0 or s = 1. But notice that s0 := 1 and sn+1 � sn for all n, so we cannot have s = 1.
Thus we conclude that s = 0.
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