
Compactness and Sequences

1 Compactness and Sequences
We are going to prove a very useful theorem that tells us that compactness is equivalent to imposing
some conditions on sequences in a space. But, before we state the equivalent conditions, it will be
convenient to make some definitions.

• A metric space X is sequentially compact if every sequence in X has a convergent subsequence.

• A metric space X is totally bounded if X can be covered by finitely many open balls of radius
ε for every ε  0. You might remember seeing this property before: on problem set 2, there
was a problem asking you to prove that, if every infinite subset of a metric space has a limit
point, then that metric space is totally bounded. Problems 4 and 5 give further properties
of totally bounded metric spaces.

Theorem 1.1. Let X be a metric space. Then the following are equivalent.

(a) X is compact.

(b) X is sequentially compact.

(c) X is complete and totally bounded.

Proof. For (a) implies (b), suppose X is compact and let (xn)n∈N be a sequence in X. Let E :=
{xn : n ∈ N}. If E is a finite set, then one of the values of E must repeat infinitely often in the
sequence, and the subsequence of just those values is a convergent subsequence. The harder case
is when E is infinite. But then E is an infinite subset of a compact space, so it has a limit point
a. We want to show that a is also a subsequential limit of a, so let U be an open set containing a

and fix a position N ∈ N. Then U contains infinitely many elements of E since a is a limit point
of E. In particular, it must contain some xn with n ≥ N (because x0, . . . , xN−1 is only finitely
many elements of E, so, since U contains infinitely many elements of E, it must also contain some
element other than one of these). Thus we can conclude (using the lemma we proved last time
about subsequential limits) that a is a subsequential limit of (xn)n∈N.

For (b) implies (c), suppose that X is sequentially compact. To see that X is complete, let
(xn)n∈N be a Cauchy sequence. Then sequential compactness guarantees that this has a convergent
subsequence. As we proved last time, this guarantees that (xn)n∈N is itself convergent. Thus X is
complete.
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To see that X is totally bounded, suppose for a contradiction that X is not totally bounded,
which means that there exists an ε such that finitely many open balls of radius ε cannot cover
X. Pick some x0 ∈ X. Then B(x0, ε) does not cover X, so there exists some x1 ∈ X r B(x0, ε).
Then the finite set of open balls {B(x0, ε), B(x1, ε)} also does not cover X, so there exists some
x2 ∈ Xr (B(x0, ε)∪B(x1, ε)). You should attempt for yourself to formalize this inductive process.
The end result is a sequence (xn)n∈N such that xn ∈ X r (B(x0, ε)∪ · · ·B(xn−1, ε)) for all n. Since
X is sequentially compact, this sequence has a convergent subsequence, so let a be a subsequential
limit. Consider the open ball B(a, ε/2). Then there exists some m such that xm ∈ B(a, ε/2), and
there exists some n ≥ m + 1 such that xn ∈ B(a, ε/2). We have used the lemma we proved last
time about subsequential limits twice here. Then

d(xm, xn) = d(xm, a) + d(a, xn) � ε,

which means that xn ∈ B(xm, ε), even though we specifically chose

xn ∈ X r (B(x0, ε) ∪ · · · ∪B(xn−1, ε)) ⊆ X rB(xm, ε).

This gives us the contradiction we were seeking, so we can conclude that X is totally bounded.
Finally, we have (c) implies (a), which is the hardest part of the proof of this theorem. Suppose

that X is complete and totally bounded and suppose for a contradiction that U is an open cover of
X which does not have a finite subcover. Since X is totally bounded, by problem 5 we can cover X

with finitely many subsets of diameter at most 1. Since U has no finite subcover, it must be that
one of these subsets cannot be covered by finitely many elements of U. Let A0 be such a set. Now
since X is totally bounded, we can apply problem 5 again to the set A0 to cover it with finitely
many subsets of diameter at most 1/2. Proceeding in this way, we obtain a nested sequence of
subsets

A0 ⊇ A1 ⊇ · · ·

such that diam(An) ≤ 1/(n + 1) and An cannot be covered by finitely many elements of U.
The fact that An cannot be covered by finitely many elements of U implies in particular that

An is nonempty, so pick some point xn ∈ An and consider the sequence (xn)n∈N. This sequence
is Cauchy. Indeed, for any ε  0, there exists some n such that 1/(N + 1) � ε, and then for any
m, n ≥ N , we see that xm ∈ Am ⊆ AN and xn ∈ An ⊆ AN , so

d(xm, xn) ≤ diam(AN) ≤ 1/(N + 1) � ε.

Since X is complete, this sequence must be convergent. Let a = lim xn.
Since U is an open cover, there exists some U ∈ U such that a ∈ U , and some open ball

B(a, r) ⊆ U . Then there exists some N such that xn ∈ B(a, r/2) for all n ≥ N . Furthermore, there
exists some N ′ such that 1/(N ′+ 1) � r/2. Then for any n ≥ max{N, N ′}, we have An ⊆ B(a, r).
Indeed, for any y ∈ An, we have

d(a, y) ≤ d(a, xn) + d(xn, y) � r/2 + diam(An) ≤ r/2 + 1/(n + 1) ≤ r/2 + 1/(N + 1) ≤ r.
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Thus we have An ⊆ U as well, which is a contradiction since we specifically chose An to not be
coverable by finitely many elements of U.

2 Sequences in Rn

A sequence (xn)n∈N is bounded if the set E := {xn : n ∈ N} is bounded. We proved last time that
every Cauchy sequence is bounded. Moreover, it is also clear that any subsequence of a bounded
sequence is again bounded. Of course, in general, bounded sequences need not be convergent. In
general it need not even be that bounded sequences have convergent subsequences: see problem 6.
But this latter phenomnenon cannot happen in Rn.

Theorem 2.1 (Bolzano-Weierstrass). If a sequence (xn)n∈N in Rn is bounded, it has a convergent
subsequence.

Proof. Since the set E := {xn : n ∈ N} is bounded, the closure Ē is as well, as we proved last
time, which implies that it is compact by the Heine-Borel theorem. Then (xn)n∈N is a sequence
in the compact set Ē. Then Ē is sequentially compact by theorem 1.1, so it has a convergent
subsequence.

Corollary 2.2. Rn is complete.

Proof. Let (xn)n∈N be a Cauchy sequence in Rn. Then it is bounded, so the Bolzano-Weierstrass
theorem 2.1 guarantees that it has a convergent subsequence. But, as we know, Cauchy sequences
with convergent subsequences must themselves be convergent.

3 Sample Problems
Problem 1. Give an example of a sequence in R with no convergent subsequence.

Problem 2. Give an example of a sequence in the open interval (0, 1) with no convergent subse-
quence.

Problem 3. We know that the open interval (0, 1) is not compact. Thus, by the theorem, it must
either not be complete or not be totally bounded, or both. Is it complete? Is it totally bounded?

Problem 4. Let X be a metric space.

(a) Show that, if X is totally bounded, then it is bounded.

(b) Give an example to show that X can be bounded without being totally bounded.

Hint. For (b), consider an infinte set with the discrete metric.

Problem 5. Let X be a totally bounded metric space and let E be a subset of X. Then, for any
ε  0, there exist finitely many sets of diameter at most ε whose union equals E.
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Proof. Since X is totally bounded, there exist finitely many open balls B(x1, ε/2), . . . , B(xn, ε/2)
whose union equals X. Moreover, we know that diam B(xi, ε/2) ≤ ε. Then Ei := E ∩ B(xi, ε/2)
are subsets of X of diameter at most ε, and clearly E = E1 ∪ · · · ∪ En.

Problem 6. Show that it is possible to have a bounded sequence in a metric space which has no
convergent subsequences.

Hint. Let X be an infinite set with a discrete metric. Explain why the only convergent sequences
in X are the ones which are eventually constant. Then choose some sequence in X all of whose
points are distinct. Explain why this sequence must be bounded, and then explain why it cannot
have any convergent subsequences.
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