
Final Exam

Note. You must prove all assertions you make using only definitions and theorems we’ve discussed
in class (or that are discussed in either Rudin or Ross, but you won’t need to use anything that is
discussed in one of these texts but wasn’t discussed in class). The only exception to this rule is that
you may use facts you remember about the standard functions of calculus (such as trigonometric
functions and exponential functions).

Problem 1 (1 point each). Determine whether each of the following statements is true or false.

(A) There exists a continuous function which maps [0, 1] onto R.

(B) There exists a continuous function which maps (0, 1] onto R.

(C) There exists a continuous function which maps (0, 1] onto the Cantor set.

(D) If a continuous function f : [0, 1) → R is uniformly continuous on [1/2, 1), then it is also
uniformly continuous on [0, 1).

(E) There exists a ∈ [0, 1] such that a · 75a = 37.

(F) If (xn)n∈N and (yn)n∈N are bounded sequences in R, then

lim sup
n→∞

(xnyn) =
(

lim sup
n→∞

xn

)(
lim sup

n→∞
yn

)
.

(G) If ∑ an is a convergent series in R and (bn)n∈N is a bounded sequence in R, then the series∑
anbn is also convergent.

(H) If ∑ an is an absolutely convergent series in R and (bn)n∈N is a bounded sequence in R, then
the series ∑ anbn is also absolutely convergent.

(I) The series
∞∑

n=0

n2015

2n
xn converges if and only if x ∈ (−2, 2).

(J) The series
∞∑

n=1
n6e−n7 converges.

(K) If f : [0, 1]→ R is a bounded function and |f | is integrable, then f is also integrable.

(L) If (fn)n∈N is a uniformly convergent sequence of nonnegative continuous functions [a, b]→ R

such that
∫ b

a
fn ≤ 2−n for all n ∈ N, and if f := lim fn, then f(x) = 0 for all x ∈ [a, b].
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(M) The union of two connected subsets of a metric space X is again connected.

(N) The intersection of two connected subsets of a metric space X is again connected.

(O) In any metric space X, any open ball B(a, r) is connected.

Problem 2 (2 points). Fix a nonempty subset E of a metric space X and then define f : X → R
by

f(a) = inf{d(a, x) : x ∈ E}.

Show that f is uniformly continuous.

Problem 3. Let (xn)n∈N be a sequence in R such that lim
n→∞

|xn+1 − xn| = 0.

(a) (1-2 points) For 1 point, give an example where the sequence (xn)n∈N is not Cauchy. For 2
points, give an example where the sequence (xn)n∈N is bounded but not Cauchy.

(b) (3 points) Let E be the set of subsequential limits of (xn)n∈N in R. Show that E is connected.
Hint. You might use problem 2 of problem set 4.

Problem 4 (3 points). Show that, for any positive real number a, there exists a strictly increasing
sequence n0 � n1 � n2 � · · · of positive integers such that

∞∑
k=0

1
nk

= a.

Problem 5 (3 points). Let X be the set of all functions N → {0, 1}. Define a metric d on X as
follows. Let d(x, x) = 0 for any x ∈ X. Given two distinct elements x, y ∈ X, find the smallest
nonnegative integer n such that x(n) 6= y(n), and then set

d(x, y) := 1
2n

.

You should spend a few minutes convincing yourself that d is a metric on X, but you need not
submit a proof of this. I find it helpful to imagine the elements x ∈ X as being the leaves on an
infinite binary tree, where the value x(n) specifies which of the two branches of the tree to follow
at the nth stage; if you’re struggling to make sense of this picture, ask me about it sometime.

Prove that X is compact.

Problem 6 (5 points). Let K be the set of all compact intervals in R, regarded as a metric space
by restricting the Hausdorff metric (the one we defined in problem 8 of problem set 2). Let R be
the set of bounded functions f : R→ R such that f is integrable on every [a, b] ∈ K, regarded as
a metric space by restricting the supremum metric. Regard the product K× R as a metric space
with the product metric (the one we defined in problem 10 of problem set 3). Consider the function
I : K× R→ R defined by

I([a, b], f) =
∫ b

a
f.

Is this function I uniformly continuous?
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