Worksheet W3Wed: Laurent Series, Review

Problem 1. Find the Laurent series for the indicated function on the indicated region. What is c_{-1} ?

(a) $e^{z}/z^{2}, 0 < |z| < \infty$ (b) $1/(z^{2} + z), 0 < |z| < 1$ (c) z/(z + 1), 0 < |z| < 1Problem 2. Let $f(z) = \frac{1}{(z - 1)(z + 1)}$. (d) $z/(z + 1), 1 < |z| < \infty$ (e) 1/(z(z - 1)(z - 2)), 0 < |z| < 1(f) 1/(z(z - 1)(z - 2)), 1 < |z| < 2

(a) Find *two* Laurent series for f(z) centered at z = 1. For each one, specify the annulus in which it converges.

(b) Integrate f over C[1, 1].

Problem 3. Let $f(z) = \frac{1}{z(z-2)^2}$.

(a) Find *two* Laurent series for f(z) centered at z = 2. For each one, specify the annulus in which it converges.

(b) Integrate f over C[2, 1].

Problem 4. For any $n \ge 0$, calculate $\int_{C[0,1]} z^n \exp(1/z) dz$.

Problem 5. Calculate $\int_{C[0,1/2]} \frac{\exp(1/z) dz}{1-z}.$

Problem 6. Suppose f is holomorphic at w and fix a positive real number θ . For any small positive real number r, let $\gamma_r(t) = w + re^{it}$ for $t \in [0, \theta]$ be the arc of angle θ of the circle of radius r centered at w. Show that

$$\mathfrak{i} heta f(w) = \lim_{r \to 0^+} \int_{\gamma_r} \frac{f(z) \, \mathrm{d}z}{z - w}.$$

Possible hint. Use a strategy similar to the proof of Cauchy's integral formula (theorem 4.24 in BMPS). You'll need to first generalize exercise 4.4 and show that

$$\int_{\gamma_{\tau}} \frac{\mathrm{d}z}{z-w} = \mathrm{i}\theta$$

for any r.

Problem 7. Here is another strategy for calculating a real integral using complex analysis. The integral we'll evaluate is

$$\int_0^\infty \frac{\sin x \, dx}{x}.$$

- (a) Convince yourself that no method you know from calculus will help you compute an antiderivative for sin(x)/x.
- (b) Suppose r is a small positive real number and R is a big one. Consider contour $C_{r,R}$ given by the horizontal segment [-R, -r], followed by the *clockwise* semicircle $-\gamma_r$ from $-\epsilon$ through ir over to r, followed by the horizontal segment [r, R], and finally the counterclockwise semicircle γ_R through iR back to -R. Integrate $f(z) := \exp(iz)/z$ over C.
- (c) Show that $\lim_{R\to\infty}\int_{\gamma_R} f(z) dz = 0.$
- (d) Use problem 6 to show that $\lim_{r\to 0^+} \int_{\gamma_r} f(z) dz = \pi i$.
- (e) Put everything together to calculate $\int_0^\infty \frac{\sin x \, dx}{x}$.