Worksheet W3Tue: Analyticity, Multiplicities of Zeroes, Maximum Modulus Principle

Problem 1. Calculate a power series representation for Log z around z = 1.

Problem 2. Find the first 4 terms of the power series representation of $\exp(z)/(1-z)$ in a neighborhood of z = 0. Do this in two ways:

- (a) Compute derivatives repeatedly and use corollary 8.5.
- (b) Multiply the power series representation of $\exp(z)$ with that of 1/(1-z).

Problem 3. Find all zeroes *and* their multiplicities for the given functions. *Note for* (*f*). Define the function at z = 0 "by continuity."

(a) $(z-1)^2(z-2)^2(z-3)^3$ (b) $(z^2+1)\exp(z)$ (c) $\exp(z)-1$ (d) Log(z)(e) (az+b)/(cz+d) where $ad-bc \neq 0$ (f) $(\exp(z)-1)/z$

Problem 4. For each of the following, find a value of $z \in \overline{D}[0, 1]$ which maximizes the modulus. Then find one which minimizes the modulus.

- (a) $|e^z|$ (c) $|z^2 + 2z + 1|$
- (b) $|z^2 2|$ (d) $|z^2 + 3z 1|$

Problem 5. Fix $c \in \mathbb{C}$ and R > 0. Suppose f is holomorphic on $\overline{D}[0, 1]$ and that $f(C[0, 1]) \subseteq D[c, R]$. Prove that $f(D[0, 1]) \subseteq D[c, R]$.

Problem 6. Fixing $c \in D[0, 1]$, define $f(z) = \frac{z-c}{1-\bar{c}z}$.

- (a) Verify that f(c) = 0.
- (b) Verify that f is holomorphic on $\overline{D}[0, 1]$. *Note*. Observe that, once you check the "ad $-bc \neq 0$ " condition, f is a Möbius transformation. Thus it is sufficient to show that the denominator does not vanish inside $\overline{D}[0, 1]$.
- (c) Show that f maps D[0, 1] bijectively onto itself. *Possible hint*. Use the maximum modulus theorem and show that |z| = 1 implies |f(z)| = 1.