Worksheet W3Mon: Cauchy’s Integral Formulas, Liouville’s Theorem

Problem 1. Calculate J szz ] for the following paths.
L 22—
(a) vy = CI[1,1] oriented counterclockwise. (b) v = C[—1,1] oriented clockwise.

Problem 2. Integrate the following functions over C[0, 3].

1 exp(z) exp(2z)
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Problem 3. Suppose f is entire and u = Re f is bounded. Show that f is constant. Possible hint. We haven't assumed
that f itself is bounded, so we can’t apply Liouville’s theorem directly. But... Can we compose f with something to
get a bounded entire function?

Problem 4. Suppose f is entire and there exists an open ball D[a, €] such that f(C) is disjoint from Dla, €]. Show
that f is constant.

Problem 5. Suppose f: D[0, 1] — DI0, 1] is holomorphic. Show that

[ (w)] < ——
1—w|

for all w € DI[0, 1]. Possible hint. Use Cauchy’s integral formula for the derivative.

Problem 6. Give two examples of regions in C on which exp(1/z) has an antiderivative. Both your examples should
be as large as possible.

Problem 7. In this problem, you will evaluate the following real integral using complex analysis.

J‘X’ xsin(x) dx
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The calculation is similar in spirit, but a little harder, than example 5.14 in BMPS.

(a) Convince yourself that no method you know from calculus will help you compute an antiderivative for
xsin(x)/(x? +1). (Or is there...?)

(b) For a real number R > 1, let og be the straight line path from —R to R and let 3 be the semicircle from R to —R.
Let yr be the semicircular closed path given by «r followed by fr. Evaluate

LR f(z)dz for f(z)= %;(112).
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L f(z) dz
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(d) Use (c) to show that Rlim J f(z)dz =0.
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Possible hints. Use symmetry of sin to argue that the integral of e R*"t over [0, 71] is twice the integral of the
same function over [0, 7t/2]. Then consider the fact that, on the interval [0, 71/2], the graph of sin stays above the
line connecting its endpoints.
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(e) Put (b) and (d) together to evaluate J %



