Worksheet W3Mon: Cauchy's Integral Formulas, Liouville's Theorem

Problem 1. Calculate $\int_{\gamma} \frac{dz}{z^2 - 1}$ for the following paths. (a) $\gamma = C[1, 1]$ oriented counterclockwise.

(b) $\gamma = C[-1, 1]$ oriented clockwise.

Problem 2. Integrate the following functions over C[0, 3].

(a)
$$\frac{1}{z-1}$$
 (c) $\frac{\exp(z)}{z^3}$ (e) $\frac{\exp(2z)}{(z-1)^2(z-2)}$
(b) $\frac{1}{z^2-4}$ (d) $\frac{1}{(z+4)(z^2+1)}$ (f) $\log(z-4i)$

Problem 3. Suppose f is entire and u = Re f is bounded. Show that f is constant. *Possible hint*. We haven't assumed that f itself is bounded, so we can't apply Liouville's theorem directly. But... Can we compose f with *something* to get a bounded entire function?

Problem 4. Suppose f is entire and there exists an open ball $D[a, \epsilon]$ such that $f(\mathbb{C})$ is disjoint from $D[a, \epsilon]$. Show that f is constant.

Problem 5. Suppose $f : D[0, 1] \rightarrow D[0, 1]$ is holomorphic. Show that

$$|\mathbf{f}'(w)| \leqslant \frac{1}{1-|w|}$$

for all $w \in D[0, 1]$. *Possible hint*. Use Cauchy's integral formula for the derivative.

Problem 6. Give two examples of regions in \mathbb{C} on which $\exp(1/z)$ has an antiderivative. Both your examples should be as large as possible.

Problem 7. In this problem, you will evaluate the following *real* integral using complex analysis.

$$\int_{-\infty}^{\infty} \frac{x \sin(x) \, \mathrm{d}x}{x^2 + 1}.$$

The calculation is similar in spirit, but a little harder, than example 5.14 in BMPS.

- (a) Convince yourself that no method you know from calculus will help you compute an antiderivative for $x \sin(x)/(x^2 + 1)$. (Or is there...?)
- (b) For a real number R > 1, let α_R be the straight line path from -R to R and let β_R be the semicircle from R to -R. Let γ_R be the semicircular closed path given by α_R followed by β_R . Evaluate

$$\int_{\gamma_{\mathsf{R}}} \mathsf{f}(z) \, \mathrm{d}z \quad \text{for} \quad \mathsf{f}(z) = \frac{z \exp(\mathrm{i}z)}{z^2 + 1}.$$

(c) Show that $\left|\int_{\beta_R} f(z) dz\right| \leq \frac{R^2}{R^2 - 1} \int_0^{\pi} e^{-R \sin t} dt.$

(d) Use (c) to show that $\lim_{R \to \infty} \int_{\beta_R} f(z) dz = 0$.

Possible hints. Use symmetry of sin to argue that the integral of $e^{-R \sin t}$ over $[0, \pi]$ is twice the integral of the same function over $[0, \pi/2]$. Then consider the fact that, on the interval $[0, \pi/2]$, the graph of sin stays above the line connecting its endpoints.

(e) Put (b) and (d) together to evaluate
$$\int_{-\infty}^{\infty} \frac{x \sin(x) dx}{x^2 + 1}$$
.