Worksheet W3Fri: Residues, Review
Problem 1. Let f be holomorphic at a. Show that
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for any integer n > 0. Conclude that Cauchy’s theorem and Cauchy’s integral formula(s) can be derived from the
residue theorem.

Problem 2. Find the following residues.
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Problem 3. Calculate the following integrals.
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Problem 4. Suppose f is entire and a,b € C with a # b.

(a) For R > |al, |b|, evaluate J %
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(b) Use (a) to prove Liouville’s theorem, ie, that any bounded entire function must be constant. Possible hint. R — oo.

Problem 5. Suppose f is holomorphic with a zero of multiplicity m at z = a. Show that

Problem 6. If f and g have simple poles at z = a, show that fg has a pole of order 2 at a and find a formula for the
residue of fg at a.



