Worksheet W2Tue: Complex Exponential

Problem 1. Show that $|e^z| \leq e^{|z|}$ for all $z \in \mathbb{C}$.

Problem 2. Find a formula for $\operatorname{Re}\exp(e^z)$ in terms of $x=\operatorname{Re}(z)$ and $y=\operatorname{Im}(z)$.

Problem 3. What can you say about e^{x+iy} for fixed y as $x \to \pm \infty$? What about for fixed x as $y \to \pm \infty$?

Problem 4. For what values of z is it that $\overline{e^{iz}} = e^{i\overline{z}}$?

Problem 5. For each of the following, draw a picture of the subset of \mathbb{C} consisting of all $z \in \mathbb{C}$ satisfying the indicated condition, and then draw an image of the image of that subset under exp.

- (a) $\text{Re } z \in [-1, 1] \text{ and } \text{Im } z \in [0, 2\pi].$ (c) Re z = 1.

(e) Re $z = 2 \operatorname{Im} z$.

- (b) Re $z \in [0, 1]$ and Im $z \in [-\pi, 0]$. (d) Im z = 1.

(f) Re $z = (\text{Im } z)^2$.

Problem 6. For each of the following, find a subset of \mathbb{C} whose image under exp is the indicated set.

(a) $D[0, 1] \setminus \{0\}$

(b) $\mathbb{C} \setminus D[0,1]$

(c) $D[0,2] \setminus D[0,1]$

Problem 7. For each of the following, find a formula involving exp for the function that the power series represents.

$$(a) \sum_{k=0}^{\infty} \frac{z^{3k+1}}{k!}$$

(b)
$$\sum_{k=1}^{\infty} \frac{2(2k-1)z^{2k-2}}{(k-1)!}$$