Worksheet W2Fri: Cauchy's Theorem

Problem 1. Evaluate $\int_{C[0,r]} \frac{dz}{z^2 - 2z - 8}$ for r = 1, 3, 5.

Problem 2. Evaluate $\int_{\gamma} \left(z - \frac{1}{z} \right) dz$ for γ the straight line path from 1 to i. Do this problem in as many ways as you can.

Problem 3. Evaluate $\int_{C[0,1/2]} (z^2 + 1)^{1/2} dz$.

Problem 4. Show that $\int_{C[0,1]} \frac{dz}{z^3(z^2+10)} = \int_{C[0,2]} \frac{dz}{z^3(z^2+10)}.$

Problem 5. Show that

$$\int_{C[0,2]} \frac{\mathrm{d}z}{z^3 + 1} = 0$$

Possible hints. Use Cauchy's theorem to argue that the integral over C[0, 2] is the same as that over C[0, R] for any $R \ge 2$. Then show that the limit as $R \to \infty$ of the integrals over C[0, R] tends to 0.

Problem 6. Suppose f is entire. Calculate $\int_{0}^{2\pi} f(1+3e^{i\theta})e^{2i\theta} d\theta$.

Problem 7. Suppose G is an open set containing $\overline{D}[0, 1]$. Let $f : G \setminus \{0\} \to \mathbb{C}$ be a holomorphic function which is *bounded near 0* (ie, there exists M > 0 and $\epsilon > 0$ such that $|f(z)| \leq M$ for all $z \in D[0, \epsilon]$). Show that

$$\int_{C[0,1]} f = 0.$$