
Worksheet 7: Induction, Prime Factorization

Problem 1. Prove that
(2n)!
2n · n!

is an integer for all n > 0.

Solution. We induct on n. When n = 0, we have

(2n)!
2n · n! =

0!
20 · 0! = 1

which is in fact an integer. For the inductive step, suppose we know that

(2k)!
2k · k!

is an integer. Observe that
(2(k+ 1))!

2k+1 · (k+ 1)! =
(2k+ 2)(2k+ 1) · (2k)!

2 · (k+ 1) · 2k · k!

= (2k+ 1) · (2k)!
2k · k! .

Since 2k + 1 is an integer, and since (2k)!/(2k · k!) is an integer by our inductive hypothesis, it follows that
(2(k+ 1))!/(2k+1 · (k+ 1)!) is also an integer.

Problem 2. Prove that 15 | 24n − 1 for all non-negative integers n.

Solution. The n = 0 case is clear, since 24·0 − 1 = 0. Suppose that 15 | 24k − 1. Then

24(k+1) − 1 = 24k+4 − 1 = 24k · 24 − 1 = (24k − 1) · 24 + 24 − 1 = (24k − 1) · 24 + 15.

Since 15 | 15 and 15 | (24k − 1), we see that 15 | 24(k+1) − 1 as well, completing the induction.

Problem 3. Let F1 = F2 = 1 and Fn = Fn−1 + Fn−2 for all n > 3. Show that Fn is even if and only if 3 | n.

Solution. We use strong induction. The base cases are easy: since F1 = 1 and F2 = 1 are both odd, the statement is
true for n 6 2. For the inductive step, suppose k > 2 and that Fm is even if and only if 3 | m for all 1 6 m 6 k. We
prove that Fk+1 is even if and only if 3 | k+ 1 using cases:

• Suppose k ≡ 0 mod 3. By our inductive hypothesis, we know that Fk is even and Fk−1 is odd, so Fk+1 =
Fk + Fk−1 is odd.

• Suppose k ≡ 1 mod 3. By our inductive hypothesis, we know that Fk is odd and Fk−1 is even, so Fk+1 =
Fk + Fk−1 is odd.

• Supposek ≡ 2 mod 3. By our inductive hypothesis, we know that Fk and Fk−1 are both odd, so Fk+1 = Fk+Fk−1

is even.

This completes the induction.

Problem 4. Suppose p1, . . . , pn are distinct primes. Show that √p1 · · ·pn is irrational.

Solution. Suppose for a contradiction that its square root is rational. Then there exist integers a and b such that
gcd(a, b) = 1 and √p1 · · ·pn = a/b. This means that p1 · · ·pnb

2 = a2. Notice that p1 | a2, so by Euclid’s lemma,
p1 | a. Thus there exists an integer x such that a = p1x, so then

p1 · · ·pnb
2 = a2 = (p1x)

2 = p2
1x

2.

Dividing through by p1, we see that
p2 · · ·pnb

2 = p1x
2.

Thus p1 | p2 · · ·pnb
2. But p1 6= p2, · · · , pn, so by Euclid’s lemma, we must have p1 | b2, and by Euclid’s lemma

again, this means that p1 | b. This p1 is a common divisor of a and b, contradicting our choice that gcd(a, b) = 1.



Problem 5. Let p1, p2, p3, . . . be a list of the primes in increasing order. Prove that pn 6 p1 · · ·pn−1 − 1 for all
n > 3.

Solution. Let a = p1 · · ·pn−1 − 1. Since n > 3 and we have p1 = 2 and p2 = 3, we have a > 2 · 3 − 1 > 5. In
particular, it has some prime factor q by the fundamental theorem of arithmetic. This means means that q 6 a.
Since a ≡ −1 6≡ 0 mod pi for i = 1, . . . , n− 1, we know that q 6= pi for all i = 1, . . . , n− 1. Since p1, p2, . . . is a list
of the primes in order, we must have q > pn. Thus we have

pn 6 q 6 a = p1 · · ·pn−1 + 1,

completing the proof.

Problem 6. Let a > 2 be an integer. By the fundamental theorem of arithmetic, there exist distinct primes p1, . . . , pn

and positive integers e1, . . . , en ∈ N such that a = pe1

1 · · ·pen
n . Show that a is a perfect square if and only if ei is

even for all i = 1, . . . , n.

Solution. By the division algorithm, we can write ei = 2fi + ri where ri ∈ {0, 1} for all i, and ei is even if and only if
ri = 0. Moreover, a is a perfect square if and only if

√
a is an integer. Thus, we are trying to show that

√
a is an

integer if and only if ri = 0 for all i. Observe that

√
a =

√
pe1

1 · · ·p
en
n =

√
p2f1+r1
1 · · ·p2fn+rn

n = pf1
1 · · ·p

fn
n

√
pr1
1 · · ·p

rn
n .

If all of the ri are 0, then the part under the square root is just 1 and
√
a is an integer. Conversely, if even one of the

ri is not 1, then the square root above is irrational by problem 4, so
√
a is not an integer.


