Worksheet 7: Induction, Prime Factorization

Problem 1. Prove that

(2n)!
2“ . n!
is an integer for alln > 0.
Solution. We induct on n. When n = 0, we have
(2n)t o
2n.nl 20.0!

which is in fact an integer. For the inductive step, suppose we know that

(2K)!
2%kl

is an integer. Observe that
(2(k+1))! (2Zk+2)(2k + 1) - (2k)!

T (k1) 2-(k+1)-2%-K
(2K)!
= (2k+1) - 5

Since 2k + 1 is an integer, and since (2k)!/(2* - k!) is an integer by our inductive hypothesis, it follows that
(2(k+1))1/(2*1 - (k + 1)!) is also an integer.

Problem 2. Prove that 15 | 2™ — 1 for all non-negative integers n.
Solution. The n = 0 case is clear, since 2*© — 1 = 0. Suppose that 15 | 24 — 1. Then
2001 g = pktd gk pf 1= (2% 1) 20 428 -1 = (2% —1) . 2% 15,
Since 15| 15 and 15 | (24* — 1), we see that 15 | 24(k*1) — 1 as well, completing the induction.
Problem 3. LetFy =F, =1and F,, =F,_1 + F,_ for alln > 3. Show that F, is even if and only if 3 | n.

Solution. We use strong induction. The base cases are easy: since F; = 1 and F, = 1 are both odd, the statement is
true for n < 2. For the inductive step, suppose k > 2 and that F, is even if and only if 3 | m for all 1 < m < k. We
prove that Fi 1 is even if and only if 3 | k + 1 using cases:

e Suppose k = 0 mod 3. By our inductive hypothesis, we know that Fy is even and Fx_1 is odd, so Fi11 =
Fy + Fr_1 is odd.

e Suppose k = 1 mod 3. By our inductive hypothesis, we know that Fy is odd and Fx_ is even, so Fi11 =
Fr + Fr_1 is odd.

e Supposek = 2 mod 3. By our inductive hypothesis, we know that Fy and Fi._; areboth odd, so Fx 11 = Fic+Fi—1
is even.
This completes the induction.
Problem 4. Suppose p1,...,pn are distinct primes. Show that ,/p1 -~ pr, is irrational.

Solution. Suppose for a contradiction that its square root is rational. Then there exist integers a and b such that
gcd(a,b) = Tand /P71 pn = a/b. This means that p; - - - p,b? = a?. Notice that p; | a?, so by Euclid’s lemma,
p1 | a. Thus there exists an integer x such that a = p1x, so then

p1- - pab? = a? = (p1x)? =pix’.
Dividing through by p;, we see that
‘pz .. .‘IDT,L})2 = p]XZ_

Thus py | p2-- ‘pnbz. But p1 # p2,- -, Pn, S0 by Euclid’s lemma, we must have p; | b2, and by Euclid’s lemma
again, this means that p; | b. This p; is a common divisor of a and b, contradicting our choice that gcd(a,b) = 1.



Problem 5. Let p1,p2,p3,... be a list of the primes in increasing order. Prove that pn, < p1---pn—1 — 1 forall
n>3.

Solution. Leta = py---pn_1— 1. Sincen > 3 and we have p;y =2 and p, =3, wehavea >2-3—12>5. In
particular, it has some prime factor q by the fundamental theorem of arithmetic. This means means that q < a.
Sincea=—-1#0mod p; fori=1,...,n—1, we know that q # p; foralli=1,...,n— 1. Since p1,p2,... isalist
of the primes in order, we must have q > p». Thus we have

pn<qg<a=pi-pnortl,

completing the proof.

Problem 6. Let a > 2 be an integer. By the fundamental theorem of arithmetic, there exist distinct primes p1,...,pn
and positive integers ey, ..., e, € Nsuch that a = pj' ---p&*. Show that a is a perfect square if and only if e; is
even foralli=1,...,n.

Solution. By the division algorithm, we can write e; = 2f; 4+ vy where r; € {0, 1} for all i, and e; is even if and only if
ri = 0. Moreover, a is a perfect square if and only if y/a is an integer. Thus, we are trying to show that y/a is an
integer if and only if r; = 0 for all i. Observe that

e 2f1+r 2fn+r f f [T T
pn“:\/p1] ]...pn“ “:p]’...pnﬂ p]‘...pn“'

If all of the r; are 0, then the part under the square root is just 1 and /a is an integer. Conversely, if even one of the
ri is not 1, then the square root above is irrational by problem 4, so y/a is not an integer.




