
Worksheet 4: Contradiction
Problem 1. Prove that

√
6 is irrational.

Solution. Suppose
√
6 is rational, ie, that

√
6 = a/b for some relatively prime integers a and b. Then 6 = a2/b2, ie,

6b2 = a2. This means that a2 is even, so a must be even. But then a = 2k for some k, so 6b2 = a2 = 4k2, which
means that 3b2 = 2k2. Thus 3b2 is even. Since 3 is odd, this means that b2 must be even, which means that b must
also be even. Thus 2 is a common divisor of a and b, contradicting our assumption that a and b are relatively prime.

Problem 2. Prove that there exist no integers a and b such that 21a+ 30b = 1.

Solution. If there did exist such integers, we would have 3(7a+ 10b) = 1, which means that 3 | 1. This is clearly a
contradiction.

Problem 3. Suppose a and b are integers such that a2 + b2 ≡ 0 mod 4. Show that a and b are not both odd.

Solution. We prove this by contraposition. Suppose it is not the case that a and b are not both odd, ie, that a and b
are both odd. Then a = 2k+ 1 and b = 2`+ 1 for some integers k and `, which means that

a2 + b2 = (2k+ 1)2 + (2`+ 1)2 = 4k2 + 4k+ 1+ 4`2 + 4`+ 1 ≡ 1+ 1 ≡ 2 6≡ 0 mod 4.

Problem 4. Show that, if n is composite, then there exists a divisor k of n such that 1 < k 6
√
n.

Solution. Suppose not, ie, that every divisor of n that’s greater than 1 is greater than
√
n. Since n is composite,

we know there exist integers a and b both greater than 1 such that n = ab. By our assumption, we know that
a, b >

√
n. But then

n = ab >
√
n ·
√
n = n

which is a contradiction.

Problem 5. Let n > 2 be an integer and let d be the smallest divisor of n which is larger than 1. Show that d must
be prime.

Solution. Suppose for a contradiction that d is not prime. Then d has a divisor a where 1 < a < d. Since a | d
and d | n, we must have a | n as well. But then a is a divisor of n which is greater than 1 and smaller than d,
contradicting our choice of d as the smallest divisor of n that’s bigger than 1. Thus d must be prime.

Problem 6. Prove that the sum of a rational and an irrational is irrational.

Solution. Suppose x is rational and y is irrational, and suppose for a contradiction that x + y is rational. Then
y = (x+ y) − x is a difference of two rational numbers, so it would have to be rational. This is a contradiction.

Problem 7. If a and b are positive real numbers, show that a+ b > 2
√
ab.

Solution. Suppose for a contradiction that a + b < 2
√
ab. Then (a + b)2 < 2ab, ie, a2 + 2ab + b2 < 2ab, which

means that a2 + b2 < 0. This is a contradiction, since a2, b2 > 0 and the sum of two non-negative numbers cannot
be negative.

Problem 8. Suppose x ∈ R and 0 < x < 1. Show that 1

x(1− x)
> 4.

Solution. Suppose for a contradiction that
1

x(1− x)
< 4.

Clearing denominators, this means that 1 < 4x(1− x). Then

0 < 4x− 4x2 − 1 = −(4x2 − 4x+ 1) = −(2x− 1)2.

But (2x− 1)2 > 0, so −(2x− 1)2 must be less than 0. This is a contradiction.

Problem 9. If a, b, c are integers such that a2 + b2 = c2, show that either a or b must be even.

Solution. Suppose not, ie, that a and b are both odd. This means that a and b must both be congruent to 1 or 3 mod
4, but then in either case, a2 and b2 are both congruent to 1 mod 4. This means that c2 ≡ a2 + b2 ≡ 2 mod 4. This
cannot happen: if c is even, then it c2 ≡ 0 mod 4, and if c is odd, then c2 ≡ 1 mod 4. In no case can c2 be congruent
to 2 mod 4!



Problem 10. Prove that there exist no rational numbers x and y such that x2 + y2 = 3.

Solution. Suppose there exist rational numbers x and y such that x2 + y2 = 3. Writing them over a common
denominator, we have x = a/c and y = b/c for integers a, b and c which have no common factor greater than 1 (*).
Then (a/c)2 + (b/c)2 = 3 implies that

a2 + b2 = 3c2.

Note that, if x is not divisible by 3, then we must have x ≡ ±1 mod 3, and in either case we have x2 ≡ 1 mod 3. This
means that a and bmust both be divisible by 3 (otherwise, the left hand side of the above equation would have to be
congruent to either 1 or 2 but the right hand side is clearly congruent to 0). Thus a = 3a ′ and b = 3b ′ for some
integers a ′, b ′, so the above equation can be rewritten

9a ′2 + 9b ′2 = 3c2

which means that
3(a ′2 + b ′2) = c2

which implies that cmust be divisible by 3. In other words, 3 is a common factor of a, b and c, contradicting our
choice that a, b, c share no common factor greater than 1.

Note. Felix and Esa asked in class about why (*) above is valid. Let’s prove this! In other words, for every x, y ∈ Q,
we want to show there exist integers a, b, c ∈ Z such that x = a/c and y = b/c and there are no factors in common
among all three of a, b, c.

I can think of at least two arguments. The first argument only uses things you’ve read about, but it’s slightly
sophisticated from a logical standpoint. The second argument is more straightforward from a logical standpoint,
but it makes use of Bézout’s theorem (which you haven’t read about yet).

Argument 1. Consider the set

S = {c ∈ N : there exist a, b ∈ Z such that x = a/c and y = b/c}.

Let me first claim that S is nonempty. Since x and y are rational, there exist integers a ′, b ′, r, s such that x = a ′/r
and y = b ′/s, where r, s > 0. Then rs ∈ S, since we can write x = a ′s/rs and y = b ′r/rs. Thus S is a nonempty
subset of N.

Now, by the well-ordering principle, Smust have a least element c. Since c ∈ S, there exist integers a, b ∈ Z such that
x = a/c and y = b/c. I now claim that gcd(a, b, c) = 1. Suppose for a contradiction that there exists an integer d > 1
which is a common factor of a, b, c. Then a/d, b/d, and c/d are all integers, and we have x = a/c = (a/d)/(c/d)
and y = b/c = (b/d)/(c/d), which shows that c/d ∈ S. But d > 1, so c/d < c, and cwas supposed to be the least
element of S. This contradiction completes argument 1.

Argument 2. Since x, y are rational, there exist integers a ′, b ′, r, s such that x = a ′/r and y = b ′/s, where
gcd(a ′, r) = 1 and gcd(b ′, s) = 1. Let c = lcm(r, s) and let a = a ′c/r and b = b ′c/s. Note that a and b are integers
since c is divisible by both r and s. Moreover,

a

c
=

a ′c/r

c
=

a ′

r
= x and b

c
=

b ′c/s

c
=

b ′

s
= y.

Let us now show that gcd(a, b, c) = 1. Suppose for a contradiction that some integer d > 1 is a common factor of
a, b, c. Then a/d, b/d, and c/d are all integers, and

x =
a

c
=

a/d

c/d
and y =

b

d
=

b/d

c/d

so by claimA below, we see that c/dmust be a commonmultiple of r and s. Since d > 1, we have c/d < c = lcm(r, s),
contradicting the definition of least common multiples. Thus we will be done once we prove the following.

Claim A. If there exist integers a, b, c such that x = a/c and y = b/c, then cmust be a common multiple of r and s.

Proof of claim A. Note that

x =
a ′

r
=

a

c
=⇒ a ′c = ra



and similarly

y =
b ′

s
=

b

c
=⇒ b ′c = sb.

Then r | a ′c and gcd(a ′, r) = 1, so r | c using claim B below. Similarly, s | b ′c and gcd(b ′, s) = 1, so s | c again by
claim B below. Thus c is a common multiple of r and s, and this proves claim A.

Claim B. If d, e, f are integers such that d | ef and gcd(d, e) = 1, then d | f.

Proof of claim B. This is the lemma that Harry told us about on Discord. I don’t know a proof of this that avoids
Bézout’s theorem, but here’s the quick proof using Bézout’s theorem. Since gcd(d, e) = 1, there exist integers u and
v such that du + ev = 1. Then f = f · 1 = f(du + ev) = dfu + efv. Clearly d | dfu, and d | efv by our assumption
that d | ef. Thus d | (dfu+ efv) = f. This proves claim B, and also completes argument 1.


