Worksheet 3: Direct and Contrapositive Proofs, Division, GCD, Congruence

Problem 1. Prove that, if a is an integer such that 5 | 2a, then 5 | a.

Solution. Suppose 5 | 2a. This means that 2a = 5k for some integer k, which means that 5k is even. Since 5 is odd, this means that k must be even, so there exists an integer l such that k = 2l. Then 2a = 5k = 10l, so a = 5l. This shows that 5 | a.

Problem 2. Prove that $5n^2 + 3n + 7$ is odd for every integer n.

Solution. We uses cases. Suppose n is even so that n = 2k for some integer k. Then

$$5n^2 + 3n + 7 = 5 \cdot 4k^2 + 3 \cdot 2k + 7 = 2(10k^2 + 3k + 3) + 1.$$

In other words, $5n^2 + 3n + 7 = 2q + 1$ for $q = 10k^2 + 3k + 3$, so $5n^2 + 3n + 7$ is odd. Next, suppose that n is odd so that n = 2k + 1 for some integer k. Then

$$5n^2 + 3n + 7 = 5 \cdot (4k^2 + 4k + 1) + 3 \cdot (2k + 1) + 7 = 2(10k^2 + 13k + 7) + 1$$

so $5n^2 + 3n + 7 = 2q + 1$ for $q = 10k^2 + 13k + 7$. Thus $5n^2 + 3n + 7$ is odd again.

Problem 3. Prove that every odd integer is the difference of two consecutive squares.

Solution. Every odd integer is of the form 2k + 1, and $2k + 1 = (k + 1)^2 - k^2$.

Problem 4. Show that the square of any integer cannot be congruent to 2 modulo 3.

Solution. Let n be an integer. We use cases to show that n^2 cannot be congruent to 2 modulo 3. If $n \equiv 0 \mod 3$, then $n^2 \equiv 0^2 = 0 \mod 3$ (using the first proposition on page 132 in Ham18). Since $0 \not\equiv 2 \mod 3$, we see that $n^2 \not\equiv 2 \mod 3$. Next, if $n \equiv 1 \mod 3$, then $n^2 \equiv 1^2 = 1 \mod 3$, and since $1 \not\equiv 2 \mod 3$, we again see that $n^2 \not\equiv 2 \mod 3$. Finally, if $n \equiv 2 \mod 3$, then $n^2 \equiv 2^2 = 4 \equiv 1 \mod 3$. As in the previous case, see conclude that $n^2 \not\equiv 2 \mod 3$.

Problem 5. For any integer n, show that either n, n + 2, or n + 4 must be divisible by 3.

Solution. We know that n = 3q + r for $r \in \{0, 1, 2\}$. We split up into cases. If r = 0, then n = 3q is divisible by 3. If r = 1, then n + 2 = (3q + 1) + 2 = 3q + 3 = 3(q + 1) is divisible by 3. Finally, if r = 2, then n + 4 = (3q + 2) + 4 = 3q + 6 = 3(q + 2) is divisible by 3. Thus, in all cases, at least one of n, n + 2, and n + 4 is divisible by 3, so we are done.

Problem 6. Show that if n is an integer and n^2 is not divisible by 4, then n must be odd.

Solution. Let's prove this by contraposition. Suppose n is even. Then n = 2k for some integer k, so $n^2 = (2k)^2 = 4k^2$ is divisible by 4.

Problem 7. Let $a, b \in \mathbb{Z}$ are both nonzero. Show that lcm(a, b) divides any common multiple of a and b.

Solution. Let m = lcm(a, b) and suppose n is a common multiple of a and b. By the division algorithm, there exist integers q and r such that n = mq + r with $0 \le r < m$. Observe that

$$r = n - mq$$

and since a, b are common factors of both n and m, they are also common factors of r. But m was supposed to be the *least* common multiple of a and b, so $0 \le r < m$ implies that r = 0. Thus n = mq, which shows that $m \mid n$.

Problem 8. Suppose a and b are integers that are not both 0. Show that gcd(a, b) = gcd(a - b, b).

Solution. Let us first show that $gcd(a, b) \leq gcd(a - b, b)$. Since gcd(a, b) | a and gcd(a, b) | b, there exist integers k_1 and k_2 such that $gcd(a, b)k_1 = a$ and $gcd(a, b)k_2 = b$. Then

$$a - b = gcd(a, b)k_1 - gcd(a, b)k_2 = gcd(a, b)(k_1 - k_2)$$

so gcd(a, b) | a - b. Thus gcd(a, b) divides both a - b and b, and since gcd(a - b, b) is the largest common divisor of both a - b and b, we must have $gcd(a, b) \leq gcd(a - b, b)$.

Next, we show that $gcd(a - b, b) \leq gcd(a, b)$. Since gcd(a - b, b) | a - b and gcd(a - b, b) | b, there exist integers ℓ_1 and ℓ_2 such that $gcd(a - b, b)\ell_1 = a - b$ and $gcd(a - b, b)\ell_2 = b$. Then

$$a = (a - b) + b = \gcd(a - b, b)\ell_1 + \gcd(a - b, b)\ell_2 = \gcd(a - b, b)(\ell_1 - \ell_2)$$

so $gcd(a - b, b) \mid a$. Thus $gcd(a - b, b) \mid a$ and $gcd(a - b, b) \mid b$, so $gcd(a - b, b) \leqslant gcd(a, b)$.

Since $gcd(a - b, b) \leq gcd(a, b)$ and $gcd(a, b) \leq gcd(a - b, b)$, we conclude that gcd(a - b, b) = gcd(a, b).

Problem 9. For positive integers a and b, prove that gcd(a, b) lcm(a, b) = ab.

Solution. Here is a solution that only uses definitions and the result of problem 7 above, courtesy of a friend of Harry's. Observe that

$$\frac{ab}{\gcd(a,b)} = a \cdot \frac{b}{\gcd(a,b)} = b \cdot \frac{a}{\gcd(a,b)},$$

and we know that b/gcd(a,b) and a/gcd(a,b) are both integers since gcd(a,b) divides both a and b, so ab/gcd(a,b) is a positive common multiple of a and b. By definition of least common multiples, it follows that

$$\operatorname{lcm}(a,b) \leqslant \frac{ab}{\operatorname{gcd}(a,b)},$$

which means that $lcm(a, b) gcd(a, b) \leq ab$.

Next, observe that ab/lcm(a, b) is an integer by problem 7 above. Moreover,

$$\frac{ab}{lcm(a,b)} = \frac{a}{lcm(a,b)/b} = \frac{b}{lcm(a,b)/a}$$

being an integer means that ab/lcm(a, b) is a common divisor of a and b. By definition of greatest common divisors, this means that

$$\frac{ab}{lcm(a,b)} \leq gcd(a,b)$$

which means that $ab \leq lcm(a, b) gcd(a, b)$. We've thus shown inequalities both ways, so we must have ab = gcd(a, b) lcm(a, b).

Alternatively, here's a different solution that makes use of Bézout's theorem. Let d = gcd(a, b) and m = ab/d. Since d is a common divisor of a and b, we have a = dr and b = ds for some integers r and s. Then m = ab/d = drb/d = rb and m = ab/d = ads/d = as, which shows that m is a common multiple of a and b.

Suppose c is any positive common multiple of a and b. Then c = au = bv for some integers u and v. By Bézout's theorem, exist integers x and y such that d = ax + by, and

$$\frac{c}{\mathfrak{m}} = \frac{c\mathfrak{d}}{a\mathfrak{b}} = \frac{c(ax+by)}{a\mathfrak{b}} = \left(\frac{c}{\mathfrak{b}}\right)x + \left(\frac{c}{a}\right)y = \mathfrak{v}x + \mathfrak{u}y \in \mathbb{Z},$$

so m | c. This implies that $m \leq c$. Thus m is the least common multiple. In other words,

$$\operatorname{lcm}(a,b) = \mathfrak{m} = \frac{ab}{d} = \frac{ab}{\operatorname{gcd}(a,b)}$$

which shows that

$$gcd(a, b) lcm(a, b) = ab.$$

Problem 10. Let n be a positive integer. Show that, if a and b are integers such that $a \equiv b \mod n$, then gcd(a,n) = gcd(b,n).

Solution. Since $a \equiv b \mod n$, we know that there exists an integer k such that a - b = nk.

Let us first show that $gcd(a, n) \leq gcd(b, n)$. Note that $gcd(a, n) \mid a$ and $gcd(a, n) \mid n$, so there exist integers k_1 and k_2 such that $gcd(a, n)k_1 = a$ and $gcd(a, n)k_2 = n$. Since b = a - nk, we see that

$$b = a - nk = gcd(a, n)k_1 - gcd(a, n)k_2k = gcd(a, n)(k_1 - k_2k)$$

so gcd(a, n) | b. Thus gcd(a, n) divides both b and n. Since gcd(b, n) is the largest integer which divides both b and n, we see that $gcd(a, n) \leq gcd(b, n)$.

We then show that $gcd(b, n) \leq gcd(a, n)$. This proof is completely analogous to the previous paragraph and is omitted, but you should make sure you can fill in the details yourself.

Thus $gcd(a, n) \leq gcd(b, n)$ and $gcd(b, n) \leq gcd(a, n)$, which means that gcd(a, n) = gcd(b, n).