
Worksheet 10: Binary Exponentiation, Euler’s Theorem

Problem 1. Calculate binary representations of the following numbers.

(a) 17

(b) 64

(c) 97

(d) 100

Problem 2. Formulate and prove a rule for determining if a number is divisible by 3 using the digits of the binary
representation.

Problem 3. Calculate ϕ(36000).

Solution. Observe that
36000 = 36 · 1000 = (2 · 3)2 · (2 · 5)3 = 25 · 32 · 53.

Thus
ϕ(36000) = 24 · (2− 1) · 31 · (3− 1) · 52 · (5− 1) = 16 · 3 · 2 · 25 · 4 = 9600.

Problem 4. Find the units digit of 3100.

Solution. Observe that ϕ(10) = 4 and that gcd(3, 10) = 1, so by Euler’s theorem we have 34 ≡ 1 mod 10. Thus

3100 = (34)25 ≡ 125 = 1 mod 10

so the units digit is 1.

Problem 5. Show that 17 | 11104 + 1.

Solution. Observe that ϕ(17) = 16 since 17 is prime. Moreover, we have gcd(11, 17) = 1. Thus, by Euler’s theorem,
we have

11104 = 1116·6+8 = (1116)6 · 118 ≡ 118 mod 17.
We now use binary exponentiation to compute 118 mod 17. First, 112 = 121 ≡ 2 mod 17. Then 114 = (112)2 ≡ 22 ≡
4 mod 17. Finally 118 ≡ (114)2 ≡ 42 = 16 mod 17. Thus

11104 + 1 ≡ 16+ 1 = 17 ≡ 0 mod 17,

showing that 11104 is divisible by 17.

Problem 6. (a) Show that, if n is odd, then ϕ(2n) = ϕ(n).

(b) Show that, if n is even, then ϕ(2n) = 2ϕ(n).

Solution. Let n = pe1

1 · · ·per
r be the prime factorization of n where ei > 1 for all i. If n is odd, then 2 is not a prime

factor of n, so the prime factorization of 2n is 21 · pe1

1 · · ·per
r . Thus

ϕ(2n) = 20 · (2− 1) ·ϕ(n) = ϕ(n).

On the other hand, if n is even, then 2 is already a prime factor of n, so let us say that p1 = 2. Then

ϕ(2n) = 2(ei+1)−1 · (2− 1) ·ϕ(pe2

2 · · ·p
er
r ) = 2ϕ(n).

Problem 7. Show that φ(n) = n/2 if and only if n = 2e for some positive integer e.

Solution. If n = 2e for some e > 1, then

ϕ(n) = 2e−1 · (2− 1) = 2e−1 = n/2,

as desired. Conversely, suppose ϕ(n) = n/2. By prime factorization, there exists an integer e > 0 and an odd
integerm > 1 such that n = 2km. If e = 0, then n is odd, but then n/2 is not an integer while ϕ(n) is, and we’re at a
contradiction. Thus we must have e > 1. We then have

2e−1m =
n

2
= ϕ(n) = φ(2e)ϕ(m) = 2e−1ϕ(m).

Dividing through my 2e−1 shows thatm = ϕ(m), which is impossible unlessm = 1. Thus we must have n = 2e.



Problem 8. Show that, if ϕ(n) | n− 1, then n is square-free (ie, all of the exponents in its prime factorization are 1).

Solution. Suppose n is not square-free. Then there is a prime divisor p of n such that pe | n for some e > 2. But then
pe−1 | ϕ(n), so p | ϕ(n), so p | n− 1. This is a contradiction: we must have gcd(n− 1, n) = 1.

Problem 9. Suppose b0, . . . , br ∈ {0, 1} with br = 1 and let k = b0 + 2b1 + 2
2b2 + · · ·+ 2rbr be the number whose

binary representation is br · · ·b0. Write down a formula for the number of multiplications required when computing
ak for some a.

Solution. It requires r squarings, each of which entails a multiplcation, and then the number of multiplications
needed to assemble the result is 1 less than the number of 1’s in the binary representation. In other words, it requires

r+ (br + · · ·+ b0 − 1).

At worst, all of the binary digits are 1, in which case the above expression evaluates to r+ (r+ 1− 1) = 2r. In other
words, no matter what, binary exponentiation with an exponent that has r binary digits will not require more than
2rmultiplications.

Problem 10. How many prime numbers are there such that p divides 29p + 1?

Solution. If p = 29, clearly p - 29p + 1. Thus we can assume that gcd(p, 29) ≡ 1. Then 29ϕ(p) = 29p−1 ≡ 1 mod p by
Euler’s theorem, so 29p ≡ 29 mod p. Thus

29p + 1 ≡ 29+ 1 ≡ 30 mod p.

This shows that p | 29p + 1 if and only if p | 30. There are exactly 3 primes dividing 30: namely, 2, 3 and 5.


