Worksheet 10: Binary Exponentiation, Euler's Theorem

Problem 1. Calculate binary representations of the following numbers.

(b) 64 (d) 100

Problem 2. Formulate and prove a rule for determining if a number is divisible by 3 using the digits of the binary representation.

Problem 3. Calculate $\phi(36000)$.

Solution. Observe that

$$36000 = 36 \cdot 1000 = (2 \cdot 3)^2 \cdot (2 \cdot 5)^3 = 2^5 \cdot 3^2 \cdot 5^3.$$

Thus

$$\varphi(36000) = 2^4 \cdot (2-1) \cdot 3^1 \cdot (3-1) \cdot 5^2 \cdot (5-1) = 16 \cdot 3 \cdot 2 \cdot 25 \cdot 4 = 9600.$$

Problem 4. Find the units digit of 3¹⁰⁰.

Solution. Observe that $\varphi(10) = 4$ and that gcd(3, 10) = 1, so by Euler's theorem we have $3^4 \equiv 1 \mod 10$. Thus

$$3^{100} = (3^4)^{25} \equiv 1^{25} = 1 \mod 10$$

so the units digit is 1.

Problem 5. Show that $17 | 11^{104} + 1$.

Solution. Observe that $\varphi(17) = 16$ since 17 is prime. Moreover, we have gcd(11, 17) = 1. Thus, by Euler's theorem, we have

$$11^{104} = 11^{16 \cdot 6 + 8} = (11^{16})^6 \cdot 11^8 \equiv 11^8 \mod 17.$$

We now use binary exponentiation to compute $11^8 \mod 17$. First, $11^2 = 121 \equiv 2 \mod 17$. Then $11^4 = (11^2)^2 \equiv 2^2 \equiv 4 \mod 17$. Finally $11^8 \equiv (11^4)^2 \equiv 4^2 = 16 \mod 17$. Thus

$$11^{104} + 1 \equiv 16 + 1 = 17 \equiv 0 \mod 17$$

showing that 11^{104} is divisible by 17.

Problem 6. (a) Show that, if n is odd, then $\varphi(2n) = \varphi(n)$.

(b) Show that, if n is even, then $\varphi(2n) = 2\varphi(n)$.

Solution. Let $n = p_1^{e_1} \cdots p_r^{e_r}$ be the prime factorization of n where $e_i \ge 1$ for all i. If n is odd, then 2 is not a prime factor of n, so the prime factorization of 2n is $2^1 \cdot p_1^{e_1} \cdots p_r^{e_r}$. Thus

$$\varphi(2n) = 2^0 \cdot (2-1) \cdot \varphi(n) = \varphi(n)$$

On the other hand, if n is even, then 2 is already a prime factor of n, so let us say that $p_1 = 2$. Then

$$\varphi(2n) = 2^{(e_i+1)-1} \cdot (2-1) \cdot \varphi(p_2^{e_2} \cdots p_r^{e_r}) = 2\varphi(n).$$

Problem 7. Show that $\phi(n) = n/2$ if and only if $n = 2^e$ for some positive integer *e*.

Solution. If $n = 2^e$ for some $e \ge 1$, then

$$\varphi(\mathbf{n}) = 2^{e-1} \cdot (2-1) = 2^{e-1} = \mathbf{n}/2,$$

as desired. Conversely, suppose $\varphi(n) = n/2$. By prime factorization, there exists an integer $e \ge 0$ and an odd integer $m \ge 1$ such that $n = 2^k m$. If e = 0, then n is odd, but then n/2 is not an integer while $\varphi(n)$ is, and we're at a contradiction. Thus we must have $e \ge 1$. We then have

$$2^{e-1}\mathfrak{m} = \frac{\mathfrak{n}}{2} = \varphi(\mathfrak{n}) = \varphi(2^e)\varphi(\mathfrak{m}) = 2^{e-1}\varphi(\mathfrak{m}).$$

Dividing through my 2^{e-1} shows that $\mathfrak{m} = \varphi(\mathfrak{m})$, which is impossible unless $\mathfrak{m} = 1$. Thus we must have $\mathfrak{n} = 2^e$.

Problem 8. Show that, if $\varphi(n) \mid n - 1$, then n is square-free (ie, all of the exponents in its prime factorization are 1).

Solution. Suppose n is not square-free. Then there is a prime divisor p of n such that $p^e | n$ for some $e \ge 2$. But then $p^{e-1} | \varphi(n)$, so $p | \varphi(n)$, so p | n - 1. This is a contradiction: we must have gcd(n - 1, n) = 1.

Problem 9. Suppose $b_0, \ldots, b_r \in \{0, 1\}$ with $b_r = 1$ and let $k = b_0 + 2b_1 + 2^2b_2 + \cdots + 2^rb_r$ be the number whose binary representation is $b_r \cdots b_0$. Write down a formula for the number of multiplications required when computing a^k for some a.

Solution. It requires r squarings, each of which entails a multiplcation, and then the number of multiplications needed to assemble the result is 1 less than the number of 1's in the binary representation. In other words, it requires

$$\mathbf{r} + (\mathbf{b}_{\mathbf{r}} + \dots + \mathbf{b}_0 - 1).$$

At worst, all of the binary digits are 1, in which case the above expression evaluates to r + (r + 1 - 1) = 2r. In other words, no matter what, binary exponentiation with an exponent that has r binary digits will not require more than 2r multiplications.

Problem 10. How many prime numbers are there such that p divides $29^p + 1$?

Solution. If p = 29, clearly $p \nmid 29^p + 1$. Thus we can assume that $gcd(p, 29) \equiv 1$. Then $29^{\phi(p)} = 29^{p-1} \equiv 1 \mod p$ by Euler's theorem, so $29^p \equiv 29 \mod p$. Thus

$$29^{p} + 1 \equiv 29 + 1 \equiv 30 \mod p$$
.

This shows that $p \mid 29^p + 1$ if and only if $p \mid 30$. There are exactly 3 primes dividing 30: namely, 2, 3 and 5.