Worksheet 10: Binary Exponentiation, Euler’s Theorem

Problem 1. Calculate binary representations of the following numbers.

(a) 17 (c) 97

(b) 64 (d) 100

Problem 2. Formulate and prove a rule for determining if a number is divisible by 3 using the digits of the binary
representation.

Problem 3. Calculate ¢(36000).

Solution. Observe that
36000 =36-1000 = (2-3)%-(2-5)> =2°.32.5%,

Thus
©(36000) =2%-(2—-1)-3"-(3=1)-52-(5—1)=16-3-2-25-4 = 9600.

Problem 4. Find the units digit of 3'°°.

Solution. Observe that ¢(10) = 4 and that ged(3,10) = 1, so by Euler’s theorem we have 3* = 1 mod 10. Thus
3100 — (3425 = 12> = 1 mod 10

so the units digit is 1.

Problem 5. Show that 17| 11794 41,

Solution. Observe that ¢(17) = 16 since 17 is prime. Moreover, we have gcd(11,17) = 1. Thus, by Euler’s theorem,

we have
11104 — 1716648 — (1116)6 . 118 = 118 mod 17.

We now use binary exponentiation to compute 118 mod 17. First, 112 = 121 = 2 mod 17. Then 11% = (11%)? =2
4 mod 17. Finally 118 = (11%)? = 42 = 16 mod 17. Thus
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1M%% 4 1=16+1=17=0mod 17,
showing that 11'%* is divisible by 17.
Problem 6. (a) Show that, if nis odd, then ¢@(2n) = @(n).
(b) Show that, if n is even, then ¢ (2n) = 2¢(n).

Solution. Letn = p{' ---p¢r be the prime factorization of n where e; > 1 for all i. If n is odd, then 2 is not a prime

factor of n, so the prime factorization of 2nis 2" - p{' - - - p¢r. Thus

@(2n) =2°-(2-1)-@(n) = o(n).

On the other hand, if n is even, then 2 is already a prime factor of n, so let us say that p; = 2. Then

@(2n) =207 (2-1) - (p$? ---p5T) = 20(n).
Problem 7. Show that ¢(n) =n/2if and only if n = 2¢ for some positive integer e.
Solution. If n = 2¢ for some e > 1, then
em)=21.2-1)=2"=n/2,

as desired. Conversely, suppose @(n) = n/2. By prime factorization, there exists an integer e > 0 and an odd
integer m > 1 such that n = 2*m. If e = 0, then n is odd, but then n/2 is not an integer while ¢ (n) is, and we're at a
contradiction. Thus we must have e > 1. We then have

n

2 m =2 = (n) = b2°)e(m) = 2° To(m).

Dividing through my 2¢~! shows that m = ¢(m), which is impossible unless m = 1. Thus we must have n = 2¢.



Problem 8. Show that, if ¢(n) | n — 1, then n is square-free (ie, all of the exponents in its prime factorization are 1).

Solution. Suppose n is not square-free. Then there is a prime divisor p of n such that p€ | n for some e > 2. But then
p¢ ' | @(n),sop | @(n),sop|n—1. This is a contradiction: we must have gcd(n —1,n) = 1.

Problem 9. Suppose by, ..., b, € {0,1} with b, =1 and let k = by + 2b; + 22b, + - - - 4+ 27b, be the number whose
binary representation is b, - - - by. Write down a formula for the number of multiplications required when computing
a* for some a.

Solution. It requires T squarings, each of which entails a multiplcation, and then the number of multiplications
needed to assemble the result is 1 less than the number of 1’s in the binary representation. In other words, it requires

T4 (by 4+ +bo —1).

At worst, all of the binary digits are 1, in which case the above expression evaluates to r + (r + 1 — 1) = 2r. In other
words, no matter what, binary exponentiation with an exponent that has r binary digits will not require more than
2r multiplications.

Problem 10. How many prime numbers are there such that p divides 297 + 1?

Solution. 1f p = 29, clearly p { 29 + 1. Thus we can assume that gcd(p,29) = 1. Then 299 () = 29P=1 = 1 mod p by
Euler’s theorem, so 297 = 29 mod p. Thus

297 +1=29+1=30mod p.

This shows that p [ 297 + 1 if and only if p | 30. There are exactly 3 primes dividing 30: namely, 2, 3 and 5.



