1. True or False?

The following vectors span \mathbb{R}^3 .

$$\begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$

(ロ)、(型)、(E)、(E)、 E) の(()

2. True or False?

The following vectors in \mathbb{R}^3 are linearly independent.

$$\begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$

(ロ)、(型)、(E)、(E)、 E) の(()

Let V be the vector space whose elements are the differentiable functions $f : \mathbb{R} \to \mathbb{R}$. For example, the function $f(x) = \sin(x)$ is an element of V, but the function g(x) = |x| is *not* an element of V.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

3. True or False?

The set
$$S = \left\{ f \in V : \frac{df}{dx} = f \right\}$$

is a subspace of V.

Let V be the vector space whose elements are the differentiable functions $f : \mathbb{R} \to \mathbb{R}$. For example, the function $f(x) = \sin(x)$ is an element of V, but the function g(x) = |x| is *not* an element of V.

3. True or False?

The set
$$S = \left\{ f \in V : \frac{df}{dx} = f \right\}$$

is a subspace of V.

Follow-up. If you think it is a subspace, can you find a spanning set?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A square matrix is *symmetric* if it stays the same after reflecting all of the entries across the top-left-to-bottom-right diagonal. For example, the following matrix is symmetric.

$$\begin{pmatrix} 1 & 3 & 4 \\ 3 & 2 & 7 \\ 4 & 7 & 5 \end{pmatrix}$$

4. True or False?

The set S of symmetric 3×3 matrices is a subspace of $\mathcal{M}_{3 \times 3}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

A square matrix is *symmetric* if it stays the same after reflecting all of the entries across the top-left-to-bottom-right diagonal. For example, the following matrix is symmetric.

$$\begin{pmatrix} 1 & 3 & 4 \\ 3 & 2 & 7 \\ 4 & 7 & 5 \end{pmatrix}$$

4. True or False?

The set *S* of symmetric 3×3 matrices is a subspace of $\mathcal{M}_{3 \times 3}$.

Follow-up. If you think it is a subspace, can you find a spanning set?

5. True or False?

 \mathcal{P}_2 can be spanned by a set of three polynomials all of which have degree 2.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ