Suppose $h: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear map, and there exists a basis *B* such that

$$\mathsf{Rep}_{B,B}(h) = egin{pmatrix} 1 & 1 \ 1 & 1 \end{pmatrix}$$
 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Then there must exist a nonzero vector $v \in \mathbb{R}^2$ such that h(v) = 2v.

Suppose $h : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear map, and there exist two bases B and C of \mathbb{R}^2 such that

$$\mathsf{Rep}_{B,C}(h) = egin{pmatrix} 1 & 1 \ 1 & 1 \end{pmatrix}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Then there must exist a nonzero vector $v \in \mathbb{R}^2$ such that h(v) = 2v.

If a square matrix A is similar to another square matrix B, then A^2 is also similar to B^2 .

(ロ)、(型)、(E)、(E)、 E) の(()

If a square matrix A is similar to another square matrix B, then A^2 is also similar to B^2 .

Follow-up. What happens if we replace both instances of the word "similar" above with the word "equivalent"? In other words, is it true that if A and B are equivalent, then A^2 is equivalent to B^2 ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00