1. True or False?

For how many values of x is the following matrix singular?

$$\begin{pmatrix} 2-x & 4 \\ 8 & 8-x \end{pmatrix}$$

- (A) 0
- (B) 1
- (C) 2
- (D) Infinitely many

- 2. Let A_{θ} be the matrix representing the linear map $h_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ that rotates vectors counterclockwise by an angle θ . For how many values of θ is A_{θ} singular?
- (A) 0
- (B) 1
- (C) 2
- (D) Infinitely many

3. What is the area of the parallelogram formed by the following vectors?

$$\langle \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \begin{pmatrix} -1 \\ 4 \end{pmatrix} \rangle$$

- (A) 1
- (B) 3
- (C) 4
- (D) 7

4. True or False?

Let $h: \mathbb{R}^3 \to \mathcal{P}_2$ be the linear map whose representation matrix with respect to the standard basis on \mathbb{R}^3 and the basis $\langle 1, 1+x^2, x \rangle$ on \mathcal{P}_2 is the following matrix.

$$\begin{pmatrix}
1 & 3 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{pmatrix}$$

Then 1 + 2x is in $\mathcal{R}(h)$.

5. True or False?

The only 2×2 matrices A such that $A^2 = I$ are the following:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$