
Select Reading Question Responses (9/14/2021)

This is more of a logistical question but I noticed that the book always says "statistical
software was used to calculate __" but never tells us how to do it in R. I’ve had to
google the actual functions and was wondering if there was a way we could figure
these out easier? Or if you could provide the basic functions for us?

We’ve seen three continuous distributions in this class: standard normal, χ2, and t. For
each of these three, R provides functions to go from observations of these distributions to
percentiles (names begin with p), and functions that go from percentiles to observations
(names begin with q). These functions are the following, where you fill in the question
marks with the appropriate numbers.

• Standard normal distribution: pnorm(?) and qnorm(?)

• χ2 distribution: pchisq(?, df = ?) and qchisq(?, df = ?)

• t distribution: pt(?, df = ?) and qt(?, df = ?)

I think those are the main things that the book has invoked “statistical software” for so far.

Why does a sample size of 30 serve as a good standard for helping to determine
if a distribution is normal? Why was the rule of thumb of a sample size of 30 not
described in earlier representations of the success-failure conditions?

I am curious how this value of 30 is reached, and similarly how values like 10 are
found for the success-failure condition. Are they arbitrary, or is there a statistical
justification/proof for these values?

These heuristics have to do with the central limit theorem, but this is not so easy to describe
without getting into somewhat complicated math. Let me try to explain this, but be
forewarned that even my short-ish explanation here isn’t so easy (especially if you haven’t
seen limits in a calculus class before).
Suppose X1, X2, ... are all independent and identically distributed random variables with
mean µ and standard deviation σ. Let

X̄n =
X1 + · · ·+ Xn

n

The general version of the central limit theorem says that

lim
n→∞

X̄n − µ

σ/
√
n
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converges to a standard normal distribution N(0, 1).
This is a mathematically precise result with a formal proof and so forth. Loosely interpretted,
it means that when n is “very big,”

(X̄n − µ)/(σ/
√
n) ≈ N(0, 1).

There’s a question of what “very big” means. This depends very much on what application
you have in mind and what the distribution of the Xi’s is like.
For example, one important special case of the central limit theorem comes up when we’re
studying a proportion. In this case, each Xi is a Bernoulli random variable. For instance,
maybe we’re interested in the proportion of Americans who speak Spanish at home. In
this case, “success” means that a given American speaks Spanish at home. In other words,
Xi represents picking out a random American, and Xi outputs 1 if that American speaks
Spanish at home and 0 if they don’t. All of these are Bernoulli random variables; if p is the
true proportion of Americans who speak Spanish at home, then each Xi has expected value
µ = p and standard deviation σ =

√
p(1− p). Now if I pick out a sample of n Americans,

the random variable
X̄n =

X1 + · · ·+ Xn

n

models the proportion of my sample who speak Spanish at home (the numerator counts
how many sampled Americans speak Spanish at home, and the denominator is the number
of Americans sampled). In other words, each X̄n is a binomial random variable. The central
limit theorem then says that

lim
n→∞

X̄n − µ

σ/
√
n

converges to a standard normal distribution. In other words,

X̄n − µ

σ/
√
n

≈ N(0, 1)

or, by rearranging terms,

X̄n ≈ N

(
µ,

σ√
n

)
= N

(
p,

√
p(1− p)

n

)

where we recall that µ = p and σ =
√

p(1− p) for Bernoulli random variables. When is
n “big enough” that the error in the above approximation is too small to matter? It really
depends on how much precision you need for whatever application you have in mind, but
for most applications, people have found that n is “big enough” when the success-failure
condition is satisfied (ie, when np ⩾ 10 and n(1− p) ⩾ 10).
The second important special case of the central limit theorem comes up when we’re
studying numbers that come from a normal random variable. For example, suppose we’re
interested in the average height of adult American women. In this case, each Xi represents
the height of a given American woman. The expected value µ of Xi is the population
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average height of all American women, and the standard deviation σ of Xi is the population
standard deviation. Now if I pick out a sample of n American women, the random variable

X̄n =
X1 + · · ·+ Xn

n

represents the average height of my sample. Then

X̄n − µ

σ/
√
n

follows a t-distribution with n− 1 degrees of freedom, and the central limit theorem says
that, when n is “big enough,”

X̄n − µ

σ/
√
n

≈ N(0, 1),

or, by rearranging again,

X̄n ≈ N

(
µ,

σ√
n

)
.

When is n “big enough” that the error in this approximation is too small to matter? Again,
it really depends on how much precision you need for the application you have in mind.
But, for most applications, people have found that n ⩾ 30 is “big enough.”
Technically the previous paragraph above only works verbatim when the Xi’s are normal.
If they’re not “too far” from being normal, you can safely continue to use the same n ⩾ 30

heuristic. But if your Xi’s are neither Bernoulli nor normal, then neither of the heuristics
from the previous two paragraphs is guaranteed to hold! If the Xi’s are really weird, it could
be that you need much bigger values of n before the error in approximation becomes small.
For example, the distribution of household incomes in the US is extremely skewed. If each
Xi represents the household income of a given American household, then the central limit
theorem still guarantees that X̄n ≈ N(µ, σ/

√
n) when your sample size n is “big enough.”

Here X̄n represents your sample mean household income, µ is the popoulation mean
household income in the US and σ is the population standard deviation of household
income in the US. But, because each Xi is so far from being either Bernoulli or normal, you
need much bigger values of n here before the sampling distribution starts to look normal.
The US Census Bureau provides household incomes from 2019 for a sample of 27256
households. This distribution looks like this:
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Let’s pretend like this is a population distribution. We’ll draw random samples from
this population of 27256 households and look at the sampling distribution of the mean
household income. Below are the sampling distributions for sample means for various
sample sizes n. The n = 10 distribution is very skewed, but even the n = 30 and n = 50

distributions are somewhat skewed. It’s not till n = 500 that the distribution starts looking
decidedly normal to me. The point is that the n ⩾ 30 is a heuristic that only applies if
you’re drawing from a population that looks normal to begin with. If your population is
extremely non-normal, you might need much bigger sample sizes to get roughly normal
sampling distributions of means.
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