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How do you calculate the p-value in a two-sided hypothesis test? Is it the same
method as one side and then multiply that by 2?

Yes! ,

How do you find tail area in a normal distribution? I don’t understand the jump
from z-score to tail area.

You have to use the pnorm function in R, which converts z-scores to percentiles. Note that
you can’t plug a z-score into pnorm and just blindly use the output as your p-value. You
have to remember that the output of pnorm will be a percentile, which is not necessarily the
same as the p-value that you’re looking for. Draw pictures to make sure you’re computing
the right thing!

I was confused by when it is considered appropriate to use a sample proportion and
when to use a population proportion. If a previous study found that p = 0.55, is that
now a population proportion if we decided to replicate it?

When the success-failure condition is satisfied, the sampling distribution for a proportion
is roughly normal N(p,

√
p(1− p)/n). If we don’t know the population proportion p, then

it makes sense to approximate it using our sample proportion p̂. This is what happens, for
example, when we compute confidence intervals. On the other hand, when you conduct
p-value hypothesis tests, you want to use your null hypothesis to describe your sampling
distribution. That way, the p-value you compute is really the probability of observing the
data assuming the null hypothesis!
For example, if a previous study found tht p = 0.55, and the question you’re interested
in is “Has p changed since that last study?” then you might conduct a hypothesis test
where your null hypothesis is something like “p = 0.55 still.” In other words, you assume
that the population proportion is still 0.55 like it was for the previous study, and use
that assumption to describe the sampling distribution. In this case, you approximate
our sampling distribution using p = 0.55 as N(0.55,

√
0.55 · 0.45/n) instead of using the

approximation p ≈ p̂. That way, the p-value you compute in the end will be the probability
of observing the data you observed if indeed it is still true that p = 0.55. If that probability
turns out to be very small, it means that the data you observed would be very unlikely if p
is still 0.55, so you can be confident in rejecting the hypothesis that p is still 0.55.
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It makes sense why failing to find strong evidence for the alternate hypothesis is not
enough to accept the null hypothesis as true, but are there any cases where we would
end up accepting the null hypothesis as true? What would that process look like?

This is very difficult to do because it involves taking larger and larger samples. Remember
that null hypotheses are usually precise: something like “p = 0.55” in the question above.
How would you verify that the population proportion is actually equal to 0.55 on the nose?
Let’s say I’m running tests with significance level α = 0.05 and H0 is the statement that
p = 0.55. I might collect a sample size that’s big enough so that me observing p̂ = 0.6

would be statistically significant. In other words, the sample size would be big enough that
observing p̂ = 0.6 would be enough to reject H0. But likely that same sample size would
still not be big enough to reject H0 if what I observe is p̂ = 0.56. For that, I would need a
bigger sample size. But even that bigger sample size might not be enough to reject H0 if
what I observe is p̂ = 0.551. I could increase my sample size again so that the difference
between 0.55 andd p̂ = 0.551 would be statistically significant, but then maybe my sample
size would still not be big enough to distinguish between 0.55 and p̂ = 0.5501. And so
forth.
In the limit, the only way of really verifying that p = 0.55 on the nose is actually just
“sampling” the entire population! In most situations, that’s just not going to be feasible.
That being said, depending of what kind of a situation you’re in, maybe the difference
between 0.55 and 0.551 is too small to matter. In that case, I would choose a sample size
that’s large enough to detect the difference between 0.55 and 0.551. I might collect a couple
of samples of that size and then not find evidence to reject H0. And then maybe I repeat
that process once or twice more, with the same results. In that case, I can probably go about
my life pretending like p = 0.55 without too much harm. . . ,

And that being said, it’s also worth pointing out that this somewhat peculiar language (“We
find evidence to reject the null hypothesis” and “We do not find evidence to reject the null
hypothesis”) is drilled into statisticians because it reflects a kind of deference to a crucial
principle in the philosophy of science: that we never know anything completely definitively,
that we have some data now, and later we might have more data, and the later data might
or might not support the conclusions we’ve drawn from our current data. So, even if you
do what’s described in the previous paragraph, you might still be met with consternation if
you told a statistician “I’ve accepted my null hypothesis that p = 0.55,” because it would
signal to them that you haven’t completely understood this very important principle (or,
even worse, that you haven’t bought into it). If you understand and buy into this principle
in the philosophy of science, I would encourage you to use this peculiar language as it’s
been established.

I am quite interested in Clopper-Pearson intervals. I don’t intuitively understand
how one might correct for failure to meet the success-failure condition.
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Great question! Suppose the population proportion we’re interested is p and let n be the
size of the sample we’re taking. The random variable X which models the number of
observations in our sample which fall into the category of interest is a binomial random
variable with probabiltiy of “success” equal to p and number of trials equal to n. So the
random variable which models the sample proportions is X/n. We know lots of things
about binomial random variables so we can calculate things like “What is the number m
are the values such that 95% of observations of X/n are within m units of the mean of X/n?”
These calculations are tedious because working with the binomial distribution is tedious,
but it’s possible to do. This would result in a Clopper-Pearson interval.
When the success-failure condition is satisfied, it turns out that X/n is approximately
N(p,

√
p(1− p)/n), and computing with a normal distribution is easier. This is what we’ve

mostly learned in the textbook. But if the success-failure condition isn’t satisfied, we just
don’t make this approximation, and using X/n as is results in the Clopper-Pearson interval.

I got curious and decided to dig into the Wikipedia article on the Clopper-Pearson
interval that the book had mentioned. After skimming the article I was wondering how
the Clopper-Pearson interval can somehow simultaneously have a 95% confidence
interval rating but yet also be wider than a traditionally calculated 95% confidence
interval? Wouldn’t that change the percentage of the confidence interval then?

Great question! I like that you’re being curious and looking up things outside the book ,

Based on some calculations I’ve just done in R, I think it’s actually not true that the
Clopper-Pearson interval is necessarily wider than the “traditional” confidence interval, if
by “traditional” we mean the one that we learned about in our textbook (on the Wikipedia
page, the “traditional” one is called the “normal approximation interval”). What Wikipedia
gives an example of is the Clopper-Pearson interval being wider than the Wilson interval
(which is yet another variant of the confidence interval, but is probably not worth dwelling
on too much here).
In any case, I think the substance of your question still stands, because it is true is that the
“traditional” confidence interval and the Clopper-Pearson interval are not exactly the same
width. Even if we’re working with a fixed significance level, sometimes the “traditional”
one is wider, and sometimes the Clopper-Pearson one is wider. The reason for this
difference in width is that, when we make a “traditional” confidence interval, we assume
the success-failure condition is satisfied and use the fact that our sampling distribution is
approximately normal because the success-failure is satisfied. The Clopper-Pearson interval
doesn’t make this approximation and uses the actual sampling distribution (which is a
binomial distribution). Sometimes the normal approximation results in a slightly over-wide
interval, and sometimes it results in a slightly under-wide interval. But the difference
between the widths are guaranteed to be quite small if the success-failure condition is
satisfied.
You might ask why we use the “traditional” method at all if it’s only an approximation
(and since it only works when the success-failure condition is satisfied). I think the answer
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here is just because doing computations with normal distributions is actually much easier
for computers than doing computations with binomial distributions!

[The textbook] says that we don’t want to incorrectly reject the null more than 5% of
the time. Why not keep it lower? What’s the point of trying to set boundaries for
something we are getting incorrect instead of just not getting it incorrect?

Because the only way of guaranteeing that you’re not incorrect is to say nothing at all!
If I’m interested in the percentage of cats that are orange tabbies, and all I have access to is
a sample (rather than population data), the only way of constructing a 100% confidence
interval (ie, one that is guaranteed to always be correct) is to say that the true percentage is
somewhere between 0% and 100%. That is a useless statement and you might as well have
said nothing.
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