
Really don’t understand how to implement Proposition 12 and could use an
example. How do I efficiently compute the partial derivatives of f and then also
efficiently compute the gcd of all of them?

I’ve added some sections to our Sage reference about computing partial derivatives (using
the gradient function) and gcds and reductions (there’s a custom reduction function
defined there). See the sections titled “Multivariable polynomials: Partial derivatives” and
“Multivariable polynomials: GCDs, factoring, and reduction.”

So, for example, if you wanted to compute
√
I where I = 〈(x+ y2)3(x− y)〉, you might do

the following:

R.<x,y> = PolynomialRing(QQ, order=’lex’)
f = (x+y^2)^3*(x-y)
reduction(f)

The output of this is xˆ2 + x*yˆ2 - x*y - yˆ3, and this is a generator for
√
I.

Note though that the above only works for principal ideals. That being said, Sage can
compute radicals of non-principal ideals as well, using the radical function. For example,
if you want to compute a Gröbner basis for

√
Iwhen I = 〈x2 + y2 − 1, y− 1〉, you can do

the following:

R.<x,y> = PolynomialRing(QQ, order=’deglex’)
I = Ideal(x^2+y^2-1,y-1)
I.radical().groebner_basis()

The output is [x, y - 1].

1


