
I don’t quite understand Exercise 3.1.5..

I don’t know how to approach question 3.1.5 in the CC. Can you walk through

how to prove the generalized Elimination Theorem?

I think 3.1.5 is really confusing to me.

Discussion. The proof for exercise 3.1.5 is basically identical to the proof of the elimination

theorem. Once you understand the setup, it’s just a matter of going through the proof of the

elimination theorem given in the textbook and almost re-writing that proof word-for-word.

Most of the difficulty is in the abstraction of the statement, so let me focus on a special case

to make the statement more transparent.

Let’s say we’re working with three variables x, y, z and we want to eliminate x and y. In

other words, we’re in the polynomial ring k[x, y, z] and looking at monomial orders of

2-elimination type.

First of all, some examples of monomial orders of 2-elimination type.

• The “easy” example is lex order where x > y > z. This is of 2-elimination type

because, under lex order, any monomial which involves x or y is bigger than any

monomial which involves only z.

I say “easy” in quotes because, while this is a conceptually easy order, lex computations

can be very long and tedious (even for a computer, if the size of the problem is big

enough!). Other monomial orders are much more computationally efficient.

• Here’s another example. Let’s say we have monomials xa1yb1zc1
and xa2yb2zc2

. We

first compare xa1yb1
and xa2yb2

using grlex, and if there’s a tie, only then do we check

to see whether c1 or c2 is bigger. For example, under this order, we would have the

following comparisons:

x2yz3 > xyz10 [since x2y >
grlex

xy]

x2yz3 > xy2z3 [since x3y >
grlex

xy2
]

x2yz3 > x2yz2 [since x2y = x2y and z3 > z2]

This is also of 2-elimination type: you should be able to see that, any monomial that

involves x or y must be bigger than any monomial which involves z alone!

There are other examples of orders of 2-elimination type (some are described in the

exercises). Here’s the statement of the generalized elimination theorem in the special case

where we have n = 3 variables and we’re looking at orders of 2-elimination type.

Statement. Suppose I is an ideal in k[x, y, z] and G is a Gröbner basis of I with respect to a

monomial order of 2-elimination type, then G2 = G ∩ k[z] is a Gröbner basis for the 2nd

elimination ideal I2 = I ∩ k[z].

Before proving this statement, let’s work through an example to see what this is saying.
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Example. Let’s say we’re looking at the ideal

I = 〈x2 + y2 + 1, y2 + z2 + 1, x〉
and we want to use the monomial order described in the second bullet point above. We set

this up in Sage as follows.

R.<x,y,z> = PolynomialRing(QQ, order=’deglex(2),lex(1)’)
I = Ideal(x^2+y^2+1,y^2+z^2+1,x)

Now observe that some polynomials in the ideal I involve only z (no x or y). For example,

we have

z3 = z · (y2 + z2 + 1) − z · (x2 + y2 + 1) + xz · x
so z3 ∈ I. In other words, since z3 is an element of both I and k[z], it is an example of

an element of the 2nd elimination ideal I2 = I ∩ k[z]. The statement of the (generalized)

elimination theorem is that there’s a systematic way of finding a (Gröbner) basis of I2 as an

ideal in k[z] using a Gröbner basis for I. In other words, we can give an explicit description

of all elements of I2.

Let’s compute a Gröbner basis for I using the command I.groebner_basis(). This outputs:

[y^2 + 1, x, z^2]

In other words, G = {y2 + 1, x, z2} is a Gröbner basis for I. The statement above says that

G2 = G ∩ k[z] is a Gröbner basis for I2. We inspect this Gröbner basis for elements which

lie in k[z], and only one of them does:

G2 = {z2}.

So the statement says that G2 = {z2} is a Gröbner basis for I2.

In particular, this means that I2 is generated by z2 as an ideal in k[z], so

I2 =
{∑

anz
n ∈ k[z]

∣∣ a0 = a1 = 0
}
.

We’ve found an explicit description of elements of I2, just by finding a Gröbner basis for I.

Proof of the statement. We know that G2 ⊆ I2, so 〈LT(G2)〉 ⊆ 〈LT(I2)〉 (as ideals in k[z]). We

want to show the opposite inclusion.

Suppose f ∈ LT(I2). Since I2 = I ∩ k[z], this means that f ∈ I, and since G is a Gröbner

basis for I, there exists g ∈ G such that LT(g) divides LT(f). Since f ∈ k[z], we know that

LT(f) only involves z, which means that LT(g) also only involves z (otherwise it could not

divide a monomial that involves only z!). But any monomial in g involving x or ywould

be bigger than a monomial involving z alone, so the fact that LT(g) only involves z means

that actually all of the terms of g only involve z. In other words, we have g ∈ k[z]. Thus
g ∈ G ∩ k[z] = G2.

Thus we have just shown that, for any f ∈ I2, the leading term LT(f) is divisible by LT(g)
for some g ∈ G2. This shows that 〈LT(I2)〉 ⊆ 〈LT(G2)〉, which completes the proof.

I now encourage you to go back and try to write out the fully general solution to exercise

3.1.5, using the above as a model.
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