
Can you give an explanation of comprehension check, problem one?

Observe that

g = y(x− yz4) − (xy− z2) = −y2z4 + z2

is an element of I. But its leading term with respect to lex order is −y2z4, and this is not
divisible by LT(xy2 − xz + y) = xy2

or by LT(xy − z2) = xy or by LT(x − yz4) = x. So

LT(g) /∈ 〈LT(g1),LT(g2),LT(g3)〉.

[In the definition of Gröbner bases,] why do we use LT(I) but not LM(I)?

It would be equivalent to use LM(I). In other words, one could equally well have defined a

subset {g1, . . . , gt} of an ideal I to be a Gröbner basis if 〈LM(I)〉 = 〈LM(g1), . . . ,LM(gt)〉.
This is essentially because the leading term and the leading monomial of a polynomial

differ only by a nonzero constant, so it makes no difference which is used to generate an

ideal. Exercise 2.5.4 asks you to make this precise.

To be honest, I would also prefer to define Gröbner bases using LM. It makes it clearer that

the ideal 〈LM(S)〉 generated by the set

LM(S) = {LM(f) | f ∈ S \ {0}}

is a monomial ideal for any subset S ⊆ k[x1, . . . , xn]. I don’t knowwhy the textbook authors

chose to use LT instead.

Is there a “descending” chain for ideals or does this only apply to varieties like

in exercise 2.5.13?

There’s a long story here! Let me sketch some of the salient points of this story.

First, if R is any ring, you can talk about the ascending chain condition and the descending

chain condition on ideals in R. The ring R satisfies the ascending chain condition if every

ascending chain of ideals

I0 ⊆ I1 ⊆ I2 ⊆ · · ·

eventually stabilizers. A ring which satisfies the ascending chain condition is called

noetherian. Similarly, R satisfies the descending chain condition if every descending chain of

ideals

I1 ⊇ I2 ⊇ I3 ⊇ · · ·

eventually stabilizes, and a ring which satisfies the descending chain condition is called

artinian.
While it looks like these two conditions are dual, the situation is far from being symmetric.

Many important examples of rings are noetherian; in fact, most rings that you’ll ever run into

in your mathematical life will be noetherian. We’ve seen that polynomial rings k[x1, . . . , xn]
are noetherian. It’s also not very hard to prove that the ring of integers Z is noetherian.
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But most rings are not artinian! Perhaps Z is one of the simplest rings, but it is not artinian.

An example of a descending chain of ideals in Z that never stabilizes is:

〈2〉 ) 〈4〉 ) 〈8〉 · · ·

Polynomial rings are also not artinian — not even in one variable! For example,

〈x〉 ) 〈x2〉 ) 〈x3〉 · · ·

is a descending chain of ideals in k[x] which never stabilizes!

But there are some artinian rings out there. For example, any field is artinian. We won’t

run into any artinian rings besides fields in this class, but they exist and it’s not terribly

surprising to run into artinian rings.

Weirdly enough, artinian rings actually must be noetherian (even though the converse is far
from being true, as we’ve just seen).
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