The set $S = \{(x, y) \in \mathbb{R}^2 : x \ge 0 \text{ or } y \ne 0\}$ is convex.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

2. Suppose I is an interval and $f: I \to \mathbb{R}$ is concave down and $f \ge 0$. Prove that the set

$$\mathcal{S} = \{(x,y): x \in I ext{ and } 0 \leq y \leq f(x)\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

is a convex subset of \mathbb{R}^2 .

Suppose $f : \mathbb{R}^n \to \mathbb{R}^n$ is differentiable and injective. Then f is étale.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Suppose $f : \mathbb{R}^n \to \mathbb{R}^n$ is differentiable, injective, and f^{-1} is also differentiable. Then f is étale.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Suppose $f : \mathbb{R}^2 \to \mathbb{R}^2$ is differentiable and f(0,0) = f(0,1). Then there exists a real number c between 0 and 1 such that f'(0,c) = 0.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let $U = \{(x, y) : x > 0\}$ and let $f : U \to \mathbb{R}^2$ be the function $f(x, y) = (xe^{-y}, xe^{y}).$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Then f is étale.

Let $U = \{(x, y) : x > 0\}$ and let $f : U \to \mathbb{R}^2$ be the function $f(x, y) = (xe^{-y}, xe^{y}).$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Then *f* is étale.

Follow-up. What is f(U)?

Let $U = \{(x, y) : x > 0\}$ and let $f : U \to \mathbb{R}^2$ be the function $f(x, y) = (xe^{-y}, xe^y).$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Then *f* is injective.

8. With the same function f as in the previous problems, observe that f(1,0) = (1,1). Calculate f'(1,0) and $(f^{-1})'(1,1)$ and compare.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ