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Introduction

These notes are intended as a guided meditation on the concept of the derivative.
They start with a rigorous treatment of single variable derivatives. The next step
is to generalize and consider multivariable derivatives. Then, after an interlude
introducing manifolds, the notes conclude with the “ultimate” generalization of
the derivative: pushforwards of tangent vectors on manifolds.

The word “ultimate” should probably be taken with a grain of salt. There
are versions of the derivative that we do not discuss here. For example, we
do not discuss the Fréchet derivative in Banach spaces, nor do we discuss the
Radon-Nikodym derivative. The emphasis here is rather on geometry.

I have tried to include many pictures, because it seems to me that you don’t
deeply understand something until you can visualize it. I have also tried to
include many exercises, because it seems to me that you really need to play with

concepts yourself in order to understand them.

How to read mathematics

The first and foremost comment I have about reading math is to remember that
you'll only understand things if you do them yourself. Spend a lot of time solving
exercises. It’s okay if you get stuck; in fact, that’s great news! That means you'll
have learned something when you finally do figure it out. Don't let it bog you
down, but do keep coming back to the exercises that give you trouble until you

manage to pin down a solution.



Generally speaking, I think that it’s useful to organize reading and learning

new mathematics in the following stages.

(1) In the first stage, focus on the definitions, theorem statements, and examples.
The examples are the most important of those. If there are exercises about

explicit examples, do them. Skip the proofs of the theorems.

(2) In the second stage, look over the proofs and try to figure out how it’s
structured. Do not go through line-by-line and trying to understand all of
the details at this point. Try to formulate an outline of the argument by
identifying the main claims that are being made. Make sure that these main
claims agree with the intuition you've developed from the examples you

studied in the previous step. Try to visualize parts of the argument.
(3) In the third stage, study the details of the proofs.

Each of these three stages builds on the previous one. If your grasp on definitions,
theorem statements, and examples is shaky, you're unlikely to get anything
meaningful out of reading proofs. If you don’t understand how a proof is broadly
structured, the details of the proofs may just be an amorphous and meaningless
string of logic.

I also think that each of these three stages is also less important than the
previous one. If your understanding of definitions and examples is solid enough,
you'll often just figure out the proofs yourself. Maybe not all of the proofs (some
theorems have very hard proofs), but that’s okay. Similarly, if you understand the
broad outline of arguments, you'll often just be able to fill in the details yourself.
Maybe not always (sometimes the details are very tricky), but that’s also okay. If
you're at the point where you really understand everything except perhaps the

trickiest parts of the proofs of the hardest theorems, you're in a good place!



“Do | need to prove this formally?”

If you find yourself asking this question, the answer is almost definitely “yes.”
You'll often learn a lot by trying to formalize arguments. It might just give you
more practice structuring formal arguments, but sometimes you’ll also discover
that an assertion you thought was true isn’t actually.

When you look at an assertion and confidently know that you could write down
a formal proof, that’s the point when maybe you don’t actually need to write it
down. I like calling this the Bergman principle (after George Bergman, who said
something to this effect in a class I took with him at UC Berkeley in Fall 2011).

How to use these notes

These notes assume basic familiarity with point-set topology (specifically, metric
spaces, and basic topological properties of R) and with linear algebra. At a few
points, there may be some ideas from point-set topology and linear algebra that
you have not encountered before. A sort of “bare minimum” exposition of some
of these ideas is included in chapter 0.

That said, you are advised to not spend time reading chapter 0 thoroughly
before jumping into the main part of the text. When ideas from chapter 0 are
invoked in the main part, a reference to the relevant part of chapter 0 is included.
My suggestion is to only look at chapter 0 when you run into a reference to it,
chasing references back as needed.

Some sections are starred (x). This is intended to indicate one of two things:
either that the section is a little more challenging than others, or that it’s slightly
less important for the overall development of concepts in these notes. I wouldn’t
say that the starred sections are all skip-able, and unstarred sections do some-
times reference results in starred sections. But, if you find yourself struggling and
need help deciding what’s most important to focus on, focus on the unstarred

sections.



Suggestions for improvement

These notes are still in very rough form. There are bound to be many errors, so
please be on the lookout for them! If you think you've found one, please share it
with me.

I'd also very much appreciate suggestions for improving the exposition. For
example, I'd like to know if there are parts that are phrased confusingly, or if
there are specific proofs where I could spend more time discussing the broad
outline before diving into the details, or if there are places where more pictures
would be useful... Any way that you think these notes could be better, please tell

me!
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0 Preliminaries

The sections in this chapter cover some ideas relating to point-set topology and
linear algebra that will be invoked in the main part of the text. Some sections are
merely intended to establish notation; others cover topics that you may not have
encountered before. I encourage skipping this chapter, and referring back to it
only when you need to.

You should consult a dedicated linear algebra textbook to review the defini-
tions of vector spaces, subspaces, linear independence, span, dimension, linear
maps, matrices, matrix multiplication, determinants, and minors. You should
also consult an analysis textbook to review the definitions of metric spaces, equiv-
alence of metrics, open subsets, closed subsets, continuous maps, compactness,

and connectedness.

0.1 Little-oh notation

Suppose X is a metric space! and xo € X is a point.

Definition 0.1.1. A function g : X\{xo} — Rispositiveif g(x) > Oforallx € X\{xo}.
Similarly, g is non-negative if g(x) > 0 for all x € X\ {x¢}.

Suppose g is a positive function. Definition 0.1.2 below formulates what it
means for a non-negative function f : X \ {xo} — R to be “little-oh of g as x tends

to xo.” Intuitively, this condition means that f is much smaller than g near x,.

Even more generally, X could be a topological space here. See section 0.7.

11



0 Preliminaries

Definition 0.1.2. A function f : X\{xo} — Ris little-oh of g as x tends to xo, written
f(x) =o(g(x)) as x — xg

if, for every € > 0, there exists an open neighborhood U of x¢ such that |f(x)| <
eg(x) for all x € U\ {xo}. Equivalently, this means that

L)
X—X0 g(x)

=0.

When x can be inferred from context, we write simply f = o(g).

Remark 0.1.3. It's worth noting that the use of the symbol “=" above is mathe-
matically abusive. The left-hand side of the “="is a function and the right-hand
side is a property of functions; of course, a function cannot literally be equal to

u__n

a property. Rather, the is being used here to mean that the function on the
left-hand side has the property described on the right-hand side. As annoying
as it is, this abuse of notation is fairly standard, so it’s probably best to just get

used to it.

Exercise 0.1.4. Prove that the two conditions in definition 0.1.2 are in fact equiv-

alent.

Exercise 0.1.5. Let X = R and x¢ = 0. For each of the functions f and g described
below, sketch graphs of f and g and then determine whether or not f = o(g) as
x — 0.

(a) f(x) =xand g(x) = x2.
(b) f(x) =xand g(x) = [x/.
(c) f(x) =x?and g(x) = |x|.

Exercise 0.1.6. For a fixed positive function g : X\ {xo} — R, prove that the set of
functions f : X'\ {xo} — R which are o(g) as x — x¢ is a vector space under the

natural operations. In other words, verify the following three facts.

12



0.2 Product metric

(1) (“Zero is small”) The zero function is o(g(x)).

(2) (“Scalar multiples of small are still small”) If ¢ € R is a scalar and f(x) =
o(g(x)), then

(3) (“Sum of smalls is still small”) If f{(x) = o(g(x)) and f,(x) = o(g(x)), then

(f1 + f2)(x) = o(g(x)).

Exercise 0.1.7 (“Smaller than small is still small”). Suppose f1,f2 : X\ {xo} = R
are functions such that |f; (x)| < [f2(x)| for all x in a punctured neighborhood of
xo, and f2(x) = o(g(x)) as x — xo. Then f;(x) = o(g(x)) also.

0.2 Product metric

Exercise 0.2.1. Suppose X and Y are metric spaces with metrics dx and dy,
respectively. Define a function d : (X x Y) x (X x Y) = R by

d((x1,y1), (x2,Y2)) = max{dx(x1,x2),dy(y1,Y2)}

Show that d is a metricon X x Y.

Exercise 0.2.2. Suppose X and Y are metric spaces with metrics dx and dy,

respectively. Define a function d : (X x Y) x (X x Y) = R by

d((x1,y1), (x2,92)) = y/dx(x1,%2)% + dy (y1,v2)2.

Show that d is a metric on X x Y, and that it is equivalent to the metric from

section 0.2.

13



0 Preliminaries

0.3 Norms on vector spaces

Definition 0.3.1. Let V be a vector space. A norm || — || on Vis a function V — R

satisfying the following two axioms.
(N1) v >0.

(N2) v| =0if and only if v =0.

(N3) Av| =|A|lv| forallA € Randv € V.

(N4) v+w| < |v[+ w|forallv,w e V.

0.3.A Norms induce metrics

Exercise 0.3.2. Suppose | — || is a norm on a vector space V. Show that the

function d : V x V — R given by d(v,w) = [v —w| is a metric.

Exercise 0.3.3. Suppose |—|is anorm on a vector space V. Show that the function
V x V =V given by (v,w) — v+ w is continuous, where V x V is regarded as a

metric space via one of the metrics defined in section 0.2.

Exercise 0.3.4. Suppose |—|is anorm on a vector space V. Show that the function
R x V — V given by (A,v) — Av is continuous, where R x V is regarded as a

metric space via one of the metrics defined in section 0.2.

Exercise 0.3.5. Suppose | — | is a norm on a vector space V and | —|” is a norm
on a vector space W and { : V — W is a linear map. Then the following are

equivalent.
(a) ¢is continuous.
(b) There exists a constant M > 0 such that [{(v)|” < M|v|forallv € V.

Possible hint. The harder direction is (a) implies (b). For this direction, since ¢ is

continuous at 0, there exists & > 0 such that [¢(v) —£(0)|” < 1 whenever [v—0| < 5.

14



0.3 Norms on vector spaces

Then note that for any nonzero vector v € V, the vector dv/[v| is within § of 0, so
the above inequality applies.
0.3.B Equivalence of norms

Definition 0.3.6. Two norms | — | and | — |’ on a vector space V are equivalent if
P q

there exist nonzero constants C; and C, such that
Cilvl < " < Capvl

forallveV.

Exercise 0.3.7. If V is a vector space, show that equivalence of norms is an

equivalence relation on the set of all norms on V.

Exercise 0.3.8. Suppose V is a vector space and | — | and | — |” are two equivalent
norms on V. Show that the metrics d and d’ corresponding to | — | and | — |” (cf.

exercise 0.3.2) are equivalent.

0.3.C Norms on finite dimensional vector spaces

If V is a finite dimensional vector space, we can construct a number of norms
on V by choosing a basis. Of these, two are especially important: the max norm
(also called the L*° norm, which is often the most convenient), and the euclidean

norm (also called the L? norm, which is the most common).

Example 0.3.9. Suppose V is a finite dimensional vector space, and v1,...,vn is
a basis for V. The L*°-norm, also called the max norm, on V with respect to this

basis is defined by

la1vi + -+ anVnleo = max{|a1|,...,|an\}-

15



0 Preliminaries

Axioms (N1) through (N3) are straightforward to verify. For the triangle inequal-
ity (N4), suppose v =ajvy + -+ anvp and w = byvy +--- + byv,. Then

[V + Wl = max{la; +by|+---+|an +bnl}

<max{lar| +[bil,- -+, [an|+ [bnl}
<max{|aily...,lanl} +max{|bi],...,[bn[}
= |V|oo + |W|oo

where we used the triangle inequality for real numbers for the second step.

Example 0.3.10. Suppose V is a finite dimensional vector space, and v1,...,vn
is a basis for V. The L2 norm, also called the euclidean norm, on V with respect to
this basis is defined by

laivi 4+ anvnla =y/af + - + di.

Axioms (N1) through (N3) are straightforward to verify. The triangle inequality

is harder: see [ , theorem 6.2], for instance.
The following states that these two norms are equivalent.

Exercise 0.3.11. Suppose V is a finite dimensional vector space and v1,...,vy is

a basis for V. Show that, for any v € V, we have

Vo < W2 < VVloo-

In fact, here is vast generalization of exercise 0.3.11.
Theorem 0.3.12. If V is a finite dimensional vector space, all norms on V are equivalent.

I'll add a proof of this eventually...

16



0.4 Euclidean space

0.3.D Sup norm on real-valued functions

Let X be a set and consider the set of functions X — R. This set is naturally a

vector space under pointwise operations: if f,g : X — R, then

(f+g)(x) = f(x) + g(x)

and if A € R, then
(Af)(x) = Af(x).

Definition 0.3.13. If X is a set, we define the sup norm of a function f : X — R,
denoted either [[f||sup,x or just |/f||sup When X can be inferred from context, by

[|fllsup = sup [f(x)].
xeX

We say that f is bounded if ||f||sup < oo.

Exercise 0.3.14. Show that || — [|sup is @ norm on the vector space of bounded

functions X — R.

Definition 0.3.15 (Uniform convergence). A sequence of functions f,, : X — R
converges uniformly to a function f : X — R if, for every e > 0, there exists N such
that ||f, — f|[sup < € foralln > N.

Definition 0.3.16 (Uniformly Cauchy sequences). A sequence of functions f, :
X — R is uniformly Cauchy if, for every e > 0, there exists N such that ||f,, —
fllsup < € forall m,n > N.

0.4 Euclidean space

For any non-negative integer n, we write R™ to denote the set of lists of n real
numbers. We will sometimes write its elements as horizontal lists of numbers
separated by commas, as in

(hi,y..., hn),

17



0 Preliminaries

and sometimes as vertical column of numbers, as in
hy
hn

The set R™ is also called n-dimensional euclidean space.

0.4.A Linear structure on R"

Given vy, v, € R™, we define their sum v; + v, by adding the entries coordinate-
wise. Given A € R and v € R, we define Av by multiplying each entry of v by A.
This endows R™ with the structure of a vector space.

For each i = 1,...,n, we define the ith standard basis vector, denoted e;, to be

the list whose ith entry is 1 and all other entries are 0.

e = (1,0,0,...,0,0)
es = (0,1,0,...,0,0)

en = (0,0,0,...,0,1)

Observe that
(h1)--->hn) =hje; + hoea +---+ hnen.
Thus the list eq, ..., e, is a basis for R™.
Foranyi=1,...,n, weletn; : R™ — R denote the ith projection map, given by

mi(h1,...,hn) = hi.

This is a linear map.

18



0.5 Matrices

0.4.B Norms on R"

Using the standard basis ej,...,en of R™, we can define the euclidean (or
[?) and max (or L*®) norms (cf. examples 0.3.9 and 0.3.10). Explicitly, if
h = (hy,...,hn) € R™, we have the following.

lhl; =y/h?+ - +h2

[hloo = max{[hil, ..., hnl}

For the most part, it doesn’t matter which of these norms you use. We’ll use |h|
to denote either of them; in other words, you are free to interpret |h| as either |h/;
or |h|s, whichever you like better. When we need to choose one over another,
we’ll explicitly specify this. Notice that, when n = 1, both of these norms are

equal (both are just given by taking the absolute value of a real number).

0.5 Matrices

The following is a whirlwind review of some facts about matrices, mostly in-
tended to establish notation. The reader is expected to remember definitions of
matrix multiplication, determinants, and minors. Few proofs are included in
this section; for more details, you are encouraged to reference a dedicated linear

algebra text.

Definition 0.5.1. We write M, « 1 for the set of all n x m matrices (ie, the matrices
with n rows and m columns). This is naturally a vector space, where addition

and scalar multiplication are defined entrywise.

Definition 0.5.2. Let GL, denote the subset of M, x, consisting of invertible

T X N matrices.
Lemma 0.5.3. Let A be a matrix. Then all of the following numbers are equal.

(1) The dimension of the span of the columns of A.

19



0 Preliminaries

(2) The dimension of the span of the rows of A.
(3) The size of largest nonzero minor of A.

This integer is called the rank of A, and is denoted rank(A).

0.5.A Matrix representations of linear maps

Definition 0.5.4. If V and W are both vector spaces, we write £(V, W) for the set
of all linear maps V — W. This is naturally a vector space.

Definition 0.5.5. If V is a vector space, let GL(V) denote the set of invertible
linear maps V — V, regarded as a subset of £(V, V).

Throughout the rest of this section, we assume that U, V, and W are finite

dimensional vector spaces.

Definition 0.5.6. Suppose B denotes a basis vy, ...,v, for V. Thenany v € V can
be written uniquely as ajvy + - - - + anvn for some scalars aj,...,an € R, and

we define the representation of v with respect to B, denoted [v]g, to be the column

vector with n entries that records the scalars ay, ..., a,. In other words,
aj
Vg =
an
Lemma 0.5.7. If B denotes a basis v, . .., Vvn isa basis for V, then the function V.— R™

given by v — [Vl is an isomorphism, with inverse given by

aj

= aivy + -+ ApVn.

20



0.5 Matrices

Definition 0.5.8. Suppose { : V — W is a linear map. Let B and C denote bases
Vi,...,Vm and wy,...,wy for Vand W, respectively. The matrix representation of
€ with respect to B and C, denoted [{]g, ¢, is the n x m matrix whose ith column of

[l]g,c is [£(vi)]c. In other words,

Us,c = [Kv)le - [tomlc]-

Lemma 0.5.9. Suppose that V and W are m- and n-dimensional vector spaces, respec-
tively, and that and B and C are bases for V and W, respectively. Then the function

C— [{]g,c is an isomorphism

L(V,W) —— My m.

)

Lemma 0.5.10. If { : V — W is a linear map between finite dimensional vector spaces

and B and C are bases for V and W, respectively, then

s, clvls = [t(v)lc

bl

foranyv e V.
Lemma 0.5.11. If ¢ : U — Vand ¢’ : V — W are linear maps, and A, B and C are
bases for U, V, and W, respectively, then

[ olla,c =g ,clllaB.

Definition 0.5.12. If { : V — W is a linear map, then the rank of {, denoted rank({)
is defined to be the dimension of the range of {.

Lemma 0.5.13. If £ : V — W is a linear map and B and C are bases for V and W,
respectively, then

rank({) = rank[{]g c.

21



0 Preliminaries

Definition 0.5.14. If { : R™ — R™ is a linear map, the standard matrix representation
of {, denoted [{], is the matrix of £ with respect to the standard bases on R™ and
R™.

Lemma 0.5.15. IfAisanxmmatrixand L : R™ — R™ is the linear map {5 (v) = Av,
then
LAl = A.

0.5.B Matrix norm

Observe that My xm is a finite dimensional vector space. If Ej; denotes the
matrix whose (j,1)-entry is 1 and all other entries are 0 for i = 1,...,m and
j =1,...,n, then the list of all of these mn matrices forms a basis for M, xm. We
can use this basis to define a L? and max norm on My, xm, as in examples 0.3.9
and 0.3.10. Explicitly, if A is a n x m matrix whose (j, 1)-entry (ie, the entry in

row j and column 1) is a; ;, we have the following.

_ 2
A= >
i

|Aloo = max|aj i
s

We know from exercise 0.3.11 that these two norms are equivalent. We'll write
|A| to denote either of these norms; in other words, when you see |A|, you can
interpret this to mean either |A[, or |A|,, whichever you like better. All of the

following don’t depend on which norm you're using.
Lemma 0.5.16. The function det : My, xn — R is continuous.

Proof. Determinants can be computed using cofactor expansions, so detA is a

polynomial in the entries of A. ]

Corollary 0.5.17. GL,, is an open subset of My xn.
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0.6 Operator norm

Proof. Since det : My, xn — R is continuous, and R \ {0} is an open subset of the
codomain, we see that GL,, = det™ ' (R \ {0}) must be openin My xn. O
Lemma 0.5.18. The function GL,, — GLy, given by A — A~ is a homeomorphism.

Proof. This function is its own inverse, so it is sufficient to show that A — A~ is
continuous. But
A~ =det(A)"" adj(A),

where adj(A) denotes the adjugate matrix of A. We know that det(A) is a
polynomial in the entries of A. Each entry of adj(A) is a minor of A and is

therefore also a polynomial in the entries of A. The lemma follows. O
The following generalizes corollary 0.5.17.
Lemma 0.5.19. Suppose k < min{m,n}. Then

Z={A € Muxm :rank(A) < k}

is a closed subset of My xm.

Proof. Saying rank(A) < k is equivalent to insisting that all k x k minors of A
vanish. Each k x k minor is a polynomial in the entries of A, so the zero set of any
particular k x k minor is a closed subset of M;, x m. We then take the intersection
of the closed subsets corresponding to all possible k x k minors, and recall the

fact that intersections of closed subsets must be closed. O

0.6 Operator norm

0.6.A Basics

Definition 0.6.1. Suppose { : R™ — R™ is a linear map. The operator norm of ¢,
denoted ||¢||, is defined to be

[€]] = sup{[t(v)] : v < T}
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If we're using the euclidean norms on R™ and R™, then we get one operator
norm, which we denote by ||¢||2 and call the euclidean (or L?) operator norm using
the above definition. If we're using the max norms, then the above definition
yields a different operator norm, which we denote by || — ||« and call the max
(or L*°) operator norm. A lot of the basic properties of the operator norm work for
either, so you can interpret the symbol || — || to refer to either of them, whichever
you like better. If we really need to distinguish one from the other, we’ll indicate
this explicitly.

Another important remark is that the operator norm ||{|| is not the same as the

norm of the standard matrix representation ||[¢]|| as defined in section 0.5.B.

Exercise 0.6.2. Suppose { : R™ — R™ is a linear map. Show that

€] = inf{A € R: e(v)

< Ap|forallv € R™}.

In particular, this means that [¢(v)| < [|¢]| - [v| for all v € R™.
Here are some fundamental properties of the operator norm.

Exercise 0.6.3. Show that the operator norm is a norm on £(R™, R™) in the sense
of definition 0.3.1.

Lemma 0.6.4. Suppose { : R™ — R™ is a nonzero linear map. Then there exists
vo € R™ such that [vo| = 1 and [€(vo)] = ||{]|.

Proof. The “unit disk”
D={xeR™:|x| <1}

is a nonempty compact subset of R™. The function v — [{(v)| is a continuous
function D — R, so its image [¢(D)| must also be a nonempty compact subset of
R. Thus there exists vo € D such that

[€(vo)| = sup [¢(D)| = |[¢]].
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Since { # 0, we know |[[{]] # 0 from exercise 0.6.3, which in turn means that
vo # 0. To prove that [vp| = 1, assume for a contradiction that [vo| < 1, and let
¢ = 1/lvg| > 1. Then |cvg| = Ic|vo] = 1, s0 cvg € D. But then

[€{evo)l = leb(vo)l = clt(vo)l > [€(vo)| = sup [¢(D)],

which is absurd. O

Lemma 0.6.5. Suppose { : R™ — R™ is a linear map and |{(v)| = o(|v|]) as v — 0.
Then € = 0.

Proof. The fact that [{(v)| = o([v]) tells us that

y (V)]
im
v—0 |V|

= 0. (0.6.6)

Suppose for a contradiction that ¢ # 0. Using lemma 0.6.4, choose vo € R™ such
that [vo| = 1 and [€(vo)| = ||¢||. For scalars ¢, observe that cvg — 0 as ¢ — 0,
which means that equation (0.6.6) implies that

[¢(cvo)

c—0 |cvol

But observe that, for nonzero ¢, we have

[elevo)l _ letlvoll e
levol lcvol
SO .
0 = tim MYy e = el
c—0 |C\10| —0
This contradicts exercise 0.6.3. O
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Exercise 0.6.7. If { : R™ — R™ is an invertible linear map, show that

vl

()l =
1=

for all v € R™. Conclude that |[¢|| > ||¢="]|~".

Exercise 0.6.8 (Submultiplicativity). Suppose { : R™ — R™ and ¢/ : R™ — RP are
both linear maps. Show that

1e" o el < [1e el

Give an example to show that this inequality can be strict.

Here is one reason for preferring the max norms over the euclidean norms:
there’s an easy formula for the max operator norm in terms of the entries of a

matrix representation.

Proposition 0.6.9. Let { : R™ — R™ be a linear map and let A = [{] be its standard
matrix representation. Then ||{||« is the maximum absolute row sum of A. In other

words,
m
1€]loo = max Y laj,il
-
where a; ; denotes the (j,1)-entry of A (ie, the entry in row j and column i).

Proof. Let M denote the maximum absolute row sum of A. In other words,

m
M = maxZ laj,il.
j

i=1

Ifh=(hy,...,hmn) € R™and |h|, < 1, then |hi| < 1 forall iand

n
i=1

m
[£(h)|e = max < maxZ laj,il = M. (0.6.10)
) )i
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Taking the supremum over all h such that |h|o, < 1 shows that ||{||. < M.
To prove equality, we will explicitly construct an h € R™ with |h|, = 1 such
that [¢(h)|x = M. Let k be an integer (between 1 and n) which achieves the

maximum absolute row sum of A. In other words, k is an integer such that

m
D lagil =M.
i1

Foreachi=1,...,m,let
1 if Qi = 0
i =
-1 if ag,i < 0
and then consider the vector h = (hq,...,h,) € R™. Observe that |h|,, = 1, and

notice that the kth entry of {(h) = Ah is

m m
Y agihi=) lail=M
f i1

by choice of h. Thus we have
M < [{(h)|ee <M

where the first inequality is from the definition of the max norm, and the second

inequality is from equation (0.6.10). Thus [{(h)|. = M, completing the proof. [J

0.6.B Operator norm as a metric *

Since the operator norm is a norm by exercise 0.6.3, we can regard £(R™,R™)
as a metric space by exercise 0.3.2. It turns out that many natural maps are

continuous when we do this.

Exercise 0.6.11 (“Evaluation is continuous”). Suppose vo € R™ is a fixed vector.
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Then the “evaluate at vo” function £(R™,R™) — R™ given by { — ({(vo) is

continuous.

Possible hint. Since the “evaluate at vy” function is linear, it is sufficient to check

continuity at 0.

Exercise 0.6.12 (“Composition is continuous”). Show that the map
L(R™, RP) x L(R™ R™) — s L(R™,RP)

given by (£’,) — £’ o { is continuous.

Exercise 0.6.13. Suppose £ : R™ — R™ is linear and A = [{] is its standard matrix

representation. Prove that
Aloo < [[€lloo < MIAso.

Possible hint. Use proposition 0.6.9.

Exercise 0.6.14. Show that the isomorphism £(R™, R™) — My xm oflemma 0.5.9,

given by { — [{], is a homeomorphism.

Under the homeomorphism £(R™,R™) — M, xn of exercise 0.6.14, the set
GL(R™) of invertible linear maps R™ — R™ corresponds to the set GL,, of invert-
ible n x n matrices; since GL,, is an open subset of M, x» by corollary 0.5.17, we
conclude that GL(R™) is an open subset of £L(R™, R™). Similarly, the following is

a consequence of combining lemma 0.5.18 and exercise 0.6.14.

Exercise 0.6.15. Show that the map GL(R™) — GL(R™) given by { — ¢ lisa

homeomorphism.

0.7 Topological spaces

This is a bare-bones introduction to topological spaces, intended for readers who

have seen metric spaces but not topological spaces before.
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0.7.A Basics

Definition 0.7.1. Let X be a set. A topology on X is a set Tx of subsets of X, called

open subsets, which satisfy the following axioms.

(T1) ¢ and X are both open subsets.
(T2) The union of an arbitrary collection of open subsets is open.

(T3) The intersection of a finite collection of open subsets is open.

Also, a subset F such that X\ Fis open is called a closed subset of X. A pair (X, Tx)
consisting of a set X and a topology T on X is called a topological space. Often, we
write simply “X” in place of the pair (X, tx).

Examples

Topological spaces come up throughout mathematics, and in general can be very
very bizarre. We will not delve into the general theory of topological spaces, and
won't see any of these bizarre examples. Instead, you are encouraged to content
yourself with the following examples and constructions.

Here are some examples we’ve already seen.

Example 0.7.2 (Metric spaces). If X is a metric space, the collection of subsets
of X that are open with respect to the metric defines a topology on X. Thus,
every metric space can be regarded as a topological space in a natural way. It’s
worth noticing that this process of regarding a metric space as a topological
space “forgets information,” since equivalent metrics on a set will define the

same topology.

Example 0.7.3. Suppose V is a finite dimensional vector space. Then all norms
on V are equivalent by theorem 0.3.12, so they all define the same topology
on V by example 0.7.2 and exercise 0.3.8. This topology is called the canonical
topology on V. Unless explicitly specified otherwise, we will always regard finite

dimensional vector spaces as topological spaces using the canonical topology.
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Example 0.7.4. Suppose X is any set. The discrete topology on X is the one where
all subsets of X are declared to be open.

Here are a few ways of producing new topological spaces out of ones we

already have.

Example 0.7.5 (Subspace). If X is a topological space and S is a subset, then the
subspace topology on S is
Ts:={SNU:U e 1x}

Further, S equipped with the subspace topology is called a subspace of X.

Example 0.7.6 (Product spaces). Suppose X and Y are topological spaces. We
define a topology T on the cartesian product X x Y by declaring a subset U to be
open if it is a union of sets of the form V x W where U and V are open subsets

of X and Y, respectively. This is called the product topology on X x Y.

Example 0.7.7 (Quotient spaces). Suppose Y is any topological space, and let ~ be
an equivalence relation on Y. For an element y € Y, let [y] denote its equivalence
class, and let X = Y/ ~ denote the set of all equivalence classes. There is a natural
function 7t: Y — X given by sending a point y € Y to its equivalence class [y]. We
define a topology on X, called the quotient topology, by declaring a subset U C X

to be open if and only if its preimage
(W) ={yeY:ly U}

isopeninY.

And here is how subspaces and product spaces interact with metric spaces

and finite dimensional vector spaces.

Exercise 0.7.8. Suppose X is a metric space and S is a subset. We can then regard
X as a topological space as in example 0.7.2 and then we have a subspace topology

71 on S. On the other hand, we can restrict the metric on X to a metric on S to
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regard S itself as a metric space, and then forget the metric and just remember

the topology T, on S as in example 0.7.2. Show that 11 = T>.

Exercise 0.7.9. Suppose V is a finite dimensional vector space and U is a subspace.
If weregard V as a topological space with the canonical topology of example 0.7.3,
we can then give U the subspace topology 1. On the other hand, we can also
regard U as a vector space in its own right and give U the canonical topology T,.

Show that 1 = 5.

Continuous functions

Definition 0.7.10 (Continuous functions). If X and Y are topological spaces, a
function f : X — Y is continuous if f~T(U) is an open subset of X whenever U is

an open subset of Y.
Continuous functions are stable under composition.

Exercise 0.7.11. If f : X — Y and g : Y — Z are continuous functions between

topological spaces, then g o f is also continuous.

The constructions we discussed above come equipped with associated contin-

uous maps.

e If X is a topological space and S is a subspace, the inclusion mapi: S — X

is continuous.

e Suppose X and Y are topological spaces. Then the maps 7tx : X x Y — X
given by mx(x,y) = x and 7ty : X x Y — Y given by 7y (x,y) =y are both

continuous.

e If Yis a topological space, ~ an equivalence relation on Y, and X = Y/ ~ the
quotient space as in example 0.7.7 above, then the map 7 : Y — X which

carries a point y € Y to its equivalence class is continuous.
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The canonical topology on a finite dimensional vector space we discussed in

example 0.7.3 above also has some nice continuity properties.

Example 0.7.12. If V is a finite dimensional vector space, then the addition map
V x V — V and the scalar multiplication map R x V — V are continuous
functions (where V has the canonical topology and V x V and R x V have the
product topologies 0.7.6). This statement is precisely the same as exercises 0.3.3
and 0.3.4.

Lemma 0.7.13. Suppose { : V. — W is a linear map between two finite dimensional
vector spaces. Then {is automatically continuous (with respect to the canonical topologies
on Vand W).

Proof. Choose a basis wy,...,w; for {(V), and extend it to a basis wy,...,wy, for
W. For eachwy,...,w;, choose vectors vy, ..., v; such that {(v{) = w;. Linear in-
dependence of wi, ..., W, guarantees linear independence of vy, ..., v,. Choose
a basis vy41,...,vm for the null space ker(£). Then vi,...,Vr,Vri1,...,Vim is
a basis for V (exercise). Now consider the max norms with respect to the
bases vi,...,vim on V and wy,...,w, on W, as in example 0.3.9. If v =

aivy + -+ anvm, we have
€V)leo = larwy + -+ + arwy| = max{|as],.. ., |lar[} < max{lail,...,lan[} = Vo

so exercise 0.3.5 tells us that { is continuous with respect to the max norm. Since
the topologies determined by the max norms on V and W are precisely the

canonical topologies (cf. example 0.7.3), we are done. ]

Open maps and homeomorphisms

Definition 0.7.14 (Open map). Suppose X and Y are topological spaces and
f: X — Yis a function. Then f is open if f(U) is an open subset of Y whenever U

is an open subset of X.
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Definition 0.7.15 (Homeomorphisms). Suppose X and Y are topological spaces
and f : X — Yisa function. Then f is a homeomorphism if it is bijective, continuous,
and f~' : Y — X is continuous. More generally, f is a homeomorphism onto its
image if is injective, continuous, and f=1: f(X) = X is continuous (where f(X) is
regarded as a topological spaces with the subspace topology 0.7.5 that it inherits
fromY).

Here is how these two notions are related to one another.
Exercise 0.7.16. Suppose f : X — Y is injective and continuous.

(a) Suppose fis open. Show that f is a homeomorphism onto its image.

(b) Suppose f : X — Y is a homeomorphism onto its image and that f(X) is an

open subset of Y. Show that f is open.

Exercise 0.7.17. Let f : R — R? be the function f(x) = (x,0). Show that f is not

open, but that it is a homeomorphism onto its image.

Example 0.7.18. Suppose £ : V — W is an isomorphism of finite dimensional
vector spaces. Then { is continuous by lemma 0.7.13. But £~! : W — V is also

linear and hence continuous (again, by lemma 0.7.13), so { is a homeomorphism.

It’s also possible to have continuous and open maps which are not homeomor-
phisms onto their images; such maps are necessarily not injective. Here is the

key example.

Exercise 0.7.19. Let X and Y be topological spaces. Regard X x Y as a topological
space with the product topology 0.7.6 and let 7t : X x Y — X be the projection

map 7t(x,y) = x. Show that 7t is open.

0.7.B Hausdorff spaces «

Definition 0.7.20 (Hausdorff). A topological space X is Hausdorff if, for every pair
of distinct points x,y € X, there exist disjoint open subsets U and V containing

x and y, respectively.
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Example 0.7.21. If X is a metric space, the corresponding topological space as in

example 0.7.2 is automatically Hausdorff.
However, quotient spaces need not be Hausdorff.

Exercise 0.7.22. Let Y = R x {+1} inside R?, and define an equivalence relation
~ by declaring that (a,1) ~ (a,—1) for all a # 0. Show that X = Y/ ~ is not
Hausdorft.

0.7.C Compact and oc-compact spaces *

Definition 0.7.23 (Open covers). An open cover of a topological space X is a

collection U of open subsets of X which cover X, in the sense that

Ju=x

Ueu
A subcover of U is a subset U/ C U which is itself an open cover.

Definition 0.7.24 (Compact). A topological space X is compact if every open

subcover has a finite subcover.

Definition 0.7.25 (o-compact). A topological space X is o-compact if it is a count-

able union of compact subspaces.

Example 0.7.26. R™ is o-compact, since
oo
R™ = | J [k k"
k=1

and each hypercube [—k, k]™ is compact.
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1 Single variable derivatives

The goal in this chapter is to formalize derivatives of functions whose input is a
single real number and whose output is also a single real number. Probably many
aspects of this theory will be familiar to you from your first exposure to single
variable calculus. While there will likely be more formality here than is typical
of introductory calculus courses, I strongly encourage you to use the intuition

you developed during your calculus course as you go through this chapter.

1.1 Two definitions of the derivative

1.1.A Slope of the tangent line

Let S be a subset of R and a € S an interior point. We would like to define the
tangent line to the graph of a function f : S — Rat a. Intuitively, the “tangent line”
should be a line that “just barely touches” the graph of f at the point (a, f(a)).
But it’s not immediately clear how to formalize this intuitive definition.

One approach to formalization begins with noticing that this intuitive “tangent
line” can be approximated by secant lines, and secant lines can be formalized
without ambiguity. More precisely, for small values of h, the point a + h is close
to a and still in S since a is an interior point of S. The slope of the secant line
passing through the two points (a,f(a)) and (a + h,f(a + h)) is computed by
the quantity

fla+h)—f(a)
h )
since the “rise” is f(a +h) — f(a), and the “run” is (a + h) — a = h. This quantity
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is often called a difference quotient. See figure 1.1.1.

a a+h

Figure 1.1.1: The graph of a function f is depicted in black. The secant line
passing through the two points (a,f(a)) and (a + h,f(a + h)) is
depicted in red. The “rise” between these points is f(a + h) — f(a),
and the “run” is h. Thus the slope of the secant line is precisely the
difference quotient (f(a +h) — f(a))/h.

As h gets smaller and smaller, the secant line becomes a better and better
approximation of our intuitive idea of the “tangent line” at a. So, we define the

slope of the tangent line to be the limit of the slopes of the secant lines.
Definition 1.1.2. A function f : S — R is differentiable at an interior point a € S if

. f(a+h)—f(a)
lim
h—0 h

exists. If this limit does exist, its value is called the derivative of f at a. We will
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usually denote this derivative as f'(a), but sometimes also as one of the following,
where x is the variable that is being used to denote the argument to f.

df df d

dx . a(a) af(x)

a X=a

Exercise 1.1.3. Use the definition of the derivative to determine whether or not
each of the following functions f is differentiable at the given point a. If it is
differentiable, calculate f'(a). Check your answers by making sure they agree
with geometric intuition and/or rules you learned during your introductory

calculus course.

(a) f(x) =Ix|ata=0.
(b) f(x) =xata=0.
(c) f(x) =x%ata=0.
(d) f(x) =x%?ata=2.

1 x>0
(e) f(x)= ata =0.
0 x<0

x ifx >0
(f) f(x) = where 1 # s.
sx ifx <0

Exercise 1.1.4 (Power rule for positive integer exponents). Prove that, if f(x) = x™
for a positive integer n, then f’(x) = nx™~! for all x € R.

Possible hint. Recall the binomial theorem, which says that

(x+h)" = Z (2) xRk,

k=0
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Exercise 1.1.5 (Constant functions rule). Prove that, if f : S — R is constant (ie,
there exists a real number ¢ such that f(x) = ¢ for all x € S), then f’(a) = 0 for

all interior points a € S.

Exercise 1.1.6 (Differentiability implies continuity). Prove that if f : S — R is

differentiable at an interior point a € S, then f is also continuous at a.
Exercise 1.1.7. Suppose f : S — R is a function and a € S is an interior point.

(a) If f is differentiable at a, must it be the case that

?

, .. fla+h)—f(a—h)
Fla) = lim 2h

(b) If
lim fl(a+h)—f(a—h)
h—0 2h

exists, must it be the case that f is differentiable at a?

(c) What if we assume that

lim fla+h)—f(a—h)
h—0 2h

exists and that f is continuous at a?

Pedantic remark. You might wonder why definition definition 1.1.2 is only made
for when a is an interior point of the domain S. First of all, notice that at the very
least we need for a to be a limit point of S. Indeed, if a is not a limit point of S,
then we cannot evaluate f(a + h) for all sufficiently small values of h, so “secant
line” stops making any sense at all.

The reason why we insist that a be an interior point (rather than just a limit
point) is a bit more subtle: requiring a to be an interior point makes the definition

resistant to changing the domain S. For example, suppose S = [0,00) and
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f: S — R is the function given by f(x) = 1 for all x € S. Notice thata =0is a
limit point but not an interior point of S. If we compute the limit
. f(0+h)—£(0)
lim ————
h—0
in S, we find that it equals 0 (cf. your proof of exercise 1.1.5). But suppose we
“extend” the domain of the function f to all of R by setting f(x) = 0 for all x < 0.

Now the limit
. f(0+h)—f(0)
im ———M——=

h—0 h
computed in R does not exist (cf. exercise 1.1.6). This means that we would have
to talk about “differentiability of f with respect to S” and “the derivative of f with
respect to S.” This is rather annoying, and insisting that a be an interior point
avoids this pedantry. More precisely, the assertion is that if a is an interior point
of Sand S C Tand f: T — R is a function, then f is “differentiable with respect
to S” if and only if it is “differentiable with respect to T,” and “the derivative
of f with respect to S” equals “the derivative of f with respect to T.” If you're
still reading this pedantic remark, you should take a few minutes and prove this

assertion.

Unimportant remark. Occasionally, it’s useful to talk about differentiability from
just one side. Suppose f : S — Ris a function and a € S is an interior point. Then
f is left differentiable at a if

. fla+h)—f(a)
lim
h—0— h

exists, and then the value of this limit is called the left derivative of f at a. Similarly,
f is right differentiable at a if

. f(a+h)—f(a)
lim
h—0+ h

exists, and then the value of this limit is called the right derivative of f at a.
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1.1.B Best linear approximation

Let’s now reinterpret the definition of the derivative in a way that will be better
suited to generalization to the multivariable setting in chapter 2.

Suppose a function f : S — R is differentiable at an interior point a € S. As we
saw in the previous section, the tangent line to the graph at the point (a, f(a)) is
a line with slope f’(a) passing through the point (a, f(a)). In other words, it is
the graph of the function t : R — R given by

t(x) =f'(a)(x — a) + f(a).
Since t is “close” to f near a, we should have that
f(a+h) —f(a) ~t(a+h)—t(a) =f'(a)h

for small values of h. See figure 1.1.8.

Notice that the function h +— f’(a)his alinear map R — R, in the sense of linear
algebra. The following result says that the function h — f’(a)h is the only linear
map that is a good approximation to h — f(a 4+ h) — f(a). The statement uses

little-oh notation; if you have not seen this before, take a look at definition 0.1.2.

Proposition 1.1.9. A function f : S — R is differentiable at an interior point a € S if
and only if there exists a linear map £ : R — R such that

If(a +h) —f(a) —£(h)] =o(/h]) ash — 0.

Moreover, if there exists such a linear map {, then { is uniquely determined: it must be

given by

forallh € R.
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a a+h

Figure 1.1.8: The graph of a function f is depicted in black, and its tangent line
t at a is depicted in red. Then the vertical distance f(a +h) — f(a)
is approximated by the vertical distance t(a + h) — t(a). The “rise”
t(a + h) — t(a) can be computed as the slope times the “run.” In
other words, t(a + h) — t(a) = f’(a)h. As h gets smaller, this
approximation of f(a + h) — f(a) gets better.

Proof. Let { be a linear map {(h) = ch, where c is some scalar. Observe that

[fla+h)—f(a fla+h) —f (a) —ch
Ih|

—Cl.

\f .
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This leads us to the following sequence of “if and only if” statements.

fla+h) —f(a) —£(h)]

[fla+h) —fla) —t(h)]=o([h]) + lim | =
<~ lim f(a—i—h)—f(a)_c =0
h—0 h
o g (oot )
h—0 h
s iy et h) —fla) _
h—0 h

The result follows. O

Definition 1.1.10. If f : S — R is differentiable at an interior point a € S, the
differential or the total derivative of f at a, denoted df, is the linear map R — R
given by dfq(h) = f'(a)h.

Thus proposition 1.1.9 says that df, is the only “good” linear approximation

to the function
h— f(a+h) —f(a).

Since it is the only “good” linear approximation, it is also fair to say that it is the
“best” linear approximation, whence the name of this section. The following is

an important version of this same idea that comes up frequently in proofs.

Remark 1.1.11 (Remainder function). Suppose f : S — R is differentiable at an
interior point a € S. We define a remainder function r on sufficiently small

values of h by
r(h) = f(a+h) —f(a) — dfq(h).

See figure 1.1.12.
Notice that the y-value of the tangent line of f at a whenx = a + his

f(a) + f'(a)h = f(a) + dfq(h),
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a a+h

Figure 1.1.12: The thick black curve is the graph of a function f and the thinner
black line is its tangent line f(a) + df, are depicted in black. If
T is the remainder function, then r(h) is the the vertical distance
indicated in red above.
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so r(h) is what's left over after approximating f by its tangent line (whence the
name, “remainder”). Notice that r(0) = 0. Moreover, T is differentiable and
therefore continuous at a (cf. exercise 1.1.6), so  is also continuous at 0.

Finally, the remainder function r is “small” because df, is a “good” linear
approximation of f(a+h)—f(a). More precisely, we know from proposition 1.1.9
that [r(h)| = o(|h|), which means that r(h)/h — 0ash — 0.

The following weak version of 1'Hopital’s rule is an application of this idea.
Note that this version of I'Hopital’s rule cannot be iterated (you cannot use it
twice to evaluate limy_,o(sin x — x)/x3, for instance). In any case, in many cases

it is often sufficient.

Exercise 1.1.13 (L'Hopital’s rule, weak version). Suppose f, g : S — R are differ-
entiable at an interior point a € S, that f(a) = g(a) = 0, and that g’(a) # 0.

Show that
. f(x)  f'(a)
lim

x>ag(x)  g'(a)’
Possible hint. First show that, if x = a + h and r is the remainder function for f
defined in remark 1.1.11, then

f(x) =fla+h) = (f’(a) + ) h.

1.2 Computing derivatives

In this section, we’ll prove some of the basic rules of differentiation that one

normally encounters in an introductory calculus course.

1.2.A Sum and scalar multiples rule

The following results can be proved using either the definition of the derivative

1.1.2 or the “best linear approximation” characterization of proposition 1.1.9. I
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1.2 Computing derivatives
strongly encourage you to try both methods for these exercises. When you use
proposition 1.1.9, you may find it useful to have done exercise 0.1.6.

Exercise 1.2.1 (Sum rule). Prove that, if f,g : S — R are both differentiable at an

interior point a € S, then f 4 g is also differentiable at a and

(f+g)(a)=1"(a)+g'(a).

Exercise 1.2.2 (Scalar multiples rule). Prove that, if c is a constant and f: S — R

is differentiable at an interior point a € S, then cf is also differentiable at a and
(cf)(a) = cf’(a).

Exercise 1.2.3. Suppose f,g : S — R are functions and f + g is differentiable at
an interior point a € S. Does it then follow that f and g are also differentiable at
a? If so, prove it. If not, provide a counterexample.

1.2.B Product and quotient rules

Proposition 1.2.4 (Product rule). Suppose f,g : S — R are both differentiable at
a € S. Then fg is also differentiable at a and

(fg)'(a) = g(a)f'(a) + f(a)g'(a).

Proof. The proof is a clever algebraic manipulation of difference quotients. The
key trick is introducing a “cross term” of the form f(a)g(a + h), and then can-

celling it out by also introducing its negative. More precisely, for any sufficiently
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small real number h, we have

(fg)la+h) —(fg)(a) _ fla+h)gla+h)—f(a)g(a)

h h
~ fla+h)gla+h)—f(a)g(la+h)+f(a)g(la+h) —f(a)g(a)
N h
_ fla+h)gla+h)—fla)gla+h) fla)gla+h)—f(a)g(a)
B h * h
_glath)- fla+h)—f(a) +f(a) - gla+h)—g(a)

h h ’

where the cross term and its negative is indicated in blue. Taking the limit as
h — 0 yields the result. O

Exercise 1.2.5. Check your understanding of the above proof of the product rule.

(@) Could you have instead introduced a cross term of the form f(a +h)g(a)? If

so, rewrite the proof using this cross term. If not, explain why not.

(b) At what point is exercise 1.1.6 tacitly used in the above proof?

Exercise 1.2.6. Reprove the scalar multiples rule (exercise 1.2.2) using the product

rule.

Exercise 1.2.7 (Quotient rule). Suppose f,g: S — R are both differentiable at an
interior point a € S, and that g(a) # 0. Prove that f/g is also differentiable at a

and (@)f(a) — fla)g'(a)
/oy gla)f’(a) —f(a)g'(a
(f/9)"(a) = o .
Possible hint. Observe that
(f/g)(a+h) — (f/g)(a) s — £
h o h ’

Multiply both the numerator and denominator by g(a + h)g(a) to clear the
denominators inside the numerator, and then introduce the cross term f(a)g(a).

Be sure to notice at what point you use exercise 1.1.6.
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1.2 Computing derivatives

Exercise 1.2.8 (Power rule for integer exponents). Extend the result of exer-

cise 1.1.4 to arbitrary integer exponents.

Possible hint. Use the quotient rule for negative integers. The exponent zero is a

special but easy case (cf. exercise 1.1.5).

1.2.C Chain rule

Proposition 1.2.9 (Chain rule). Suppose that S and T are both subsets of R, that
f : S — T is differentiable at an interior point a, that f(a) is an interior point of T,
and that g : T — R is differentiable at f(a). Then the composite gof : S — R is also
differentiable at a, and

(gof)'(a) = g'(f(a))f'(a).

We will discuss two different (but similar) proofs of this important result. But
first, here is an application. We will later prove a better version of this result (cf.
theorem 1.3.36).

Exercise 1.2.10 (Derivatives of inverses). Suppose f : S — R is differentiable at
an interior point a € S and that b = f(a) is an interior point of f(S). Suppose
further that f is injective, so that the inverse function f~1:f(S) — R exists. Show
that, if the inverse f ! is differentiable at b, then

1

—T1y7 .
O = ey

First proof

The first proof uses the definition of the derivative 1.1.2, but there is a subtle
technicality involved; so, let us discuss it informally first before diving into the
formal proof. The idea involved is again a clever rewriting of difference quotients.
We introduce a cross term, which in this case is f(a + h) — f(a). But this time

we introduce this cross term “multiplicatively” rather than “additively.” More

47



1 Single variable derivatives

precsiely, we have

(gof)lath)—(gof)(a) g(fla+h))—g(fla))
h h
_ g(fla+h))—g(f(a)) fla+h)—f(a)
fla+h) —f(a) h )

The difference quotient on the right is precisely f’(a). Thus, it would be sufficient

to prove
- g(fla+h) —g(f(a))
h—o  fla+h)—f(a)

= g'(f(a)). (1.2.11)

This formula looks an awful lot like the difference quotient that is used to define
the derivative of g at f(a). In fact, since f is continuous at a by exercise 1.1.6, we
have f(a + h) = f(a) + h for small values of h, which means that

g(fla+h)) —g(f(a)) _ g(fla) +h)—g(fla)) _ g(f(a) +h)—g(f(a))

(
fla+h)—f(a) ~  f(a)+h—Tf(a) h

for small values of h. Taking the limit as h — 0 on the right-hand side yields
precisely the definition of g’(f(a)), so equation (1.2.11) seems like a reasonable
conjecture.

The problem is that equation (1.2.11) isn’t true. Issues arise when f(a +h) =
f(a) for arbitrarily small values of h, which leads to an infinite sequence of
divisions by 0. More precisely, if, for every € > 0, there exists an h such that
[h| < e and f(a + h) = f(a), then

g(fla+h)) —g(f(a))
fla+h) —f(a)

cannot converge as h — Oatall. This kind of behavior, where f keeps on repeating
the value f(a) arbitrarily close to a, is in fact possible, even when f happens to

be differentiable at a. This happens in the following example.
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1.2 Computing derivatives

Example 1.2.12. Let f : R — R be the function

2 . .
fx) = {x sin(1/x) ifx #0
0 if x =0.

You will show in exercise 1.2.25 that f is in fact differentiable at 0. Set hy = 1/km.
Then hy — 0 as k — oo, and f(0 + hy) = f(0) for all k. In other words, f keeps

on repeating the value 0 arbitrarily close to 0.

We will get around the kind of issue that is described by the above example
by carefully studying the expression

g(fla+h)) —g(fla))

fla+h)—f(a) (1.2.13)

Observe that, when f(a+h) # f(a), then this expression is precisely the difference
quotient that calculates the slope of the secant line passing through (f(a), g(f(a))
and (f(a + h),g(f(a + h)). When f(a + h) = f(a), this secant line doesn’t
make sense; but what does make sense is the tangent line! So we’ll remove the
undefinedness of expression (1.2.13) by extending it so that it takes the value
g’(f(a)) whenever f(a + h) = f(a).

First proof of the chain rule. Consider the function A defined for small values of h
by
A(h) =f(a+h) — f(a).

See figure 1.2.14. Then A(0) = 0 and A is also continuous at 0 because f is
continuous at a, by exercise 1.1.6.

Next, define a function o by the following.

ifk 0

g(f(a) + k) —g(f(a))
{g’(f(a)) ifk=0
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a a+h

Figure 1.2.14: The graph of f is depicted in black. The value of the function A on
a small nonzero input value h is the vertical distance depicted in
red.

In other words, o is the function that, on some small nonzero input k, outputs
the slope of the secant line connecting the two points (f(a), g(f(a)) and (f(a) +
k, g(f(a) + k)). See figure 1.2.15. It follows from the definition of the derivative
of g at f(a) that the function o is continuous at 0.

You will verify in exercise 1.2.17 below that

(gofilat+h)—(gof)a) _

h =o(A(h)) - o (1.2.16)
for all small values of h. Thus
}13% (gof)(a+ h})l— (gofila) _ }ljﬁ}) o(e(h) - fla+ h})L_ fla) _ o/ (f(a))(a)
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1.2 Computing derivatives

g(fla) +k)

Figure 1.2.15: The graph of g is depicted in black. The output of the function o
on a small nonzero input value k is the slope of the red secant line
passing through the two points (f(a), g(f(a)) and (f(a)+k, g(f(a)+
k)).

where we have used the continuity of € and o and the definition of the derivative
of f at a for the last step. This completes the proof. O

Exercise 1.2.17. Prove equation (1.2.16).

Possible hint. You might split up your proof of equation (1.2.16) into two cases:
when f(a + h) # f(a), and when f(a + h) = f(a).

Second proof

Our second proof of the chain rule will use the “best linear approximation”

interpretation of derivatives provided by proposition 1.1.9.
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Second proof of the chain rule. Note that, by definition of dg¢(4) and df,, we have
dgs(a)(dfa(h)) = g(f(a))f'(a)h.
Thus, by proposition 1.1.9, it is sufficient to prove that
g(fla+h)) —g(f(a)) — dgs(a)(dfa(h)) = o(lh]) ash — 0.

In other words, we want to prove that g(f(a + h)) — g(f(a)) — dg¢(q)(dfa(h)) is
“small.” What we know is that the following remainder functions are “small” (cf.

remark 1.1.11).
r(h) = f(a+h) — f(a) — dfq(h)

s(k) = g(f(a) + k) — g(f(a)) — dgs(a) (k)

So the gist of the proof is to rewrite g(f(a + h)) — g(f(a)) — dg¢(q)(dfa(h)) in
terms of r and s, and then prove that it is “small” using the facts that r and s are
“small.”

Rearranging the definition of r(h) tells us that
g(f(a+h)) =g(f(a) + dfq(h) + r(h)). (1.2.18)
Now note that the definition of s(k) for k = df4(h) + r(h) says the following.

s(dfq(h) + 1(h))
g(f(a) 4+ dfq(h) +r(h))

g(f(a) +dfa(h) +r(h)) —g(f(a)) — dgs(a)(dfa(h) +r(h))
g(f(a)) + dg¢(a)(dfa(h) + r(h)) + s(dfa(h) + (h))
g9(f(a)) + dg¢(a)(dfa(h)) + dgs(a)(r(h)) + s(dfa(h) +r(h))

We used linearity of dgy(q) for the final step above. Combining this with equa-
tion (1.2.18) show that

g(fla+h)) —g(f(a)) — dgs(a)(dfa(h)) = dgs(a)(r(h)) + s(dfa(h) 4+ r(h)).
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At this point, we’ve rewritten g(f(a + h)) — g(f(a)) — dg¢(q)(dfa(h)) in terms of
T and s. We’ll now prove that the right-hand side is in fact “small”, ie, that it is
o(|h|). Observe that

dgr(a)(r(h)) = g'(f(a)) - r(h),

ie, dg¢(q) o 7 is just a scalar multiple of r. We know that r(h) = o(|h/) as h — 0,
so it follows that dg¢(q)(T(h)) = o(|h|) also. So it is sufficient to prove that

s(dfa(h) +r(h)) = offh[).

We’ve now hit the technical part, so let’s hit pause.

To see why this is technical, and for essentially the same reasons as the previous

proof, notice that we're trying to prove that

Lo Is(dfa(h) + 1))
h—0 [h )
To prove this, it’s tempting to introduce a multiplicative cross-term as follows.

s(dfa(M) +r(W))) _ Is(dfa(h) +r(h)]) [dfa(R)+r(R)]
[h [dfq(h) +r(h)| Ih

But notice that dfy(h) + r(h) = f(a + h) — f(a) by definition of r, so this cross
term is problematic for the same reasons as before! If f(a + h) = f(a) for h
arbitrarily close to 0, we have an infinite sequence of divisions by zeroes that
causes problems.

We’ll deal with this problem in essentially the same way as before: namely, we

extend the definition of
Is(dfq(h) +r(h))

|dfq(h) + r(h)]
so that it is also defined when f(a + h) = f(a).

Second proof of the chain rule, continued. Definen(k) = s(k)/k for nonzero k. Then
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extend 1 by setting n(0) = 0. The fact that s(k) = o(|k|) as k — 0 implies that n

is continuous at 0. We now have

for all k. Applying this with k = df,(h) + r(h), we see that

s(dfa(h) +r(h))] _ m(dfa(h) +r(h))[-[dfa(h) +r(h)|

[h a [h

< In(dfq(h) +r(h)] - <|f,(a)| N |T|(1T|)l> _

Since 1 is continuous at 0 (cf. remark 1.1.11), sois df +1. We have (df, +71)(0) =
0, and we have just seen that n is also continuous at 0. Thus the composite

1o (dfq + 1) is continuous at 0. Thus

. [r(h)]
/ —
tim in(ara ) + () - (1 (@ + L) <o,
where we have used the fact that [r(h)| = o(|h|) to see that the parenthetical
expression has a finite limit (namely, |f'(a)[). So, by the squeeze theorem, we can
conclude that
[s(dfa(h) 4 r(h))[ = o([hl). 0

Notice that in the first proof, the trick to overcoming the technicality was
defining the function o at k = 0. In the second proof, the trick to overcoming the
same technicality was defining n at k = 0. These two tricks are really the same

trick, as shown by the following.

Exercise 1.2.19. Prove that the function 1 from the second proof and the function

o from the first proof are related by the equation

o(k) = g'(f(a)) +n(k).
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1.2 Computing derivatives

1.2.D Interior extremum theorem

We first recall the following definitions.

Definition 1.2.20. Supppose X is a set, f : X — Ris a function, and a € X.

a is an absolute maximum, or just maximum, of f if f(x) < f(a) for all x € X.

a is a strict absolute maximum, or just strict maximum of f if f(x) < f(a) for
all x € X\ {a}.

a is an absolute minimum, or just minimum, of f if f(x) > f(a) for all x € X.

a is a strict absolute minimum, or just strict minimum of f if f(x) > f(a) for all
x € X\ {al

ais aabsolute extremum, or just extremum, if it is either an absolute maximum
or an absolute minimum. Similarly, a is a strict absolute extremum, or just
strict extremum, if it is either a strict absolute maximum or a strict absolute

minimum.

If X is a metric space!, we can also make the following definitions.

a is a local maximum of f if there exists a neighborhood U of a in X such
that f(x) < f(a) forall x € U.

a is a strict local maximum, or just strict maximum of f if there exists a
neighborhood U of a in X such that f(x) < f(a) forall x € U\ {a}.

a is a local minimum of f if there exists a neighborhood U of a in X such that
f(x) = f(a) for all x € U.

a is a strict local minimum, or just strict minimum of f if there exists a
neighborhood U of a in X such that f(x) > f(a) forall x € U\ {a}.
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e ais a local extremum if it is either a local maximum or a local minimum.
Similarly, a is a strict local extremum if it is either a strict local maximum or

a strict local minimum.

The following is a key property of derivatives that you probably remember
using frequently when you were first exposed to calculus.

Exercise 1.2.21 (Interior extremum theorem). Suppose an interior point a € S is
a local extremum of a function f : S — R. If f is differentiable at a, prove that
f'(a) =0.

Possible hint. Consider the following “slope of secant” function (which we’ve

seen before, during the first proof of the chain rule in section 1.2.C).

fla+h)—f(a)

ifh#0
f'(a) ifh=0
Since f is differentiable at x = a, we know that o is continuousath = 0. If aisa

local minimum, what can you say about the values of o for positive values of h?

Negative values of h? Then consider the case when a is a local maximum.

But remember, the converse to the interior extremum theorem 1.2.21 is not

true.

Exercise 1.2.22. Give an example of a function f : R — R such that f'(0) = 0, but
f does not have a local extremum at 0.

1.2.E Non-rational functions

Using the rules we’ve developed so far, we can differentiate any rational function
(ie, a quotient of a polynomial by a polynomial). In this section, we will simply

state some facts about differentiation of other types of functions one frequently

For the definition of local extremums, X could also be a topological space.
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encounters. We will prove most of these a bit later; we are stating them now
so that we can discuss a richer repertoire of examples as we go along. We've

already seen the need for a richer repertoire of examples in example 1.2.12.

Power rule

First off, here is the most general statement of the power rule.

Proposition 1.2.23 (Power rule for real exponents). If r is any real number and
f:(0,00) — Ris the function f(x) = X", then f'(x) = rx"~" for all x € (0, 00).

We'll prove this for rational exponents (ie, exponents that can be written as
fractions of an integer over another integer) in exercise 1.3.37. We won't prove
it in full generality, because that would require a long tangential discussion of
what x" even means for irrational r. Actually, once we have a sufficiently rigorous
definition of x" for irrational v, it turns out that proposition 1.2.23 is actually a

relatively straightforward consequence of exercise 1.3.37.

Exponential, sine, and cosine functions

Next up, we have the exponential, sine, and cosine functions. These are usually

defined by their power series, as follows.

exp(x) = Z X—'
n=0
X 1yn.2n
cos(x) = ¥ (QZ)n; (1.2.24)
n=0 ’
) 0 (_1 )nX2n+1
sin(x) = ;) 2n+1)!

All three of these have infinite radius of convergence (ie, they’re defined for

all real x). We'll prove that power series can be differentiated term-by-term in
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theorem 1.3.42 inside their radius of convergences. This yields the following

standard facts.
(1) If f(x) = exp(x), then f'(x) = exp(x).
(2) If f(x) = sin(x), then '(x) = cos(x).
(3) If f(x) = cos(x), then f'(x) = —sin(x).

Pedantic remark. Defining the exponential, sine, and cosine functions using power
series is mathematically sound, but there are numerous facts about these func-
tions that are not clear from the power series. For example, it’s useful knowing
that, if e := exp(1), then exp(x) = e*. This fact is not immediately clear from the
power series definition; it requires some proof, and we won’t prove it here, but
you should feel free to use it. It’s obviously also useful to know that sines and
cosines have something to do with trigonometry. Again, this is not clear from
the power series definition; it requires some proof, and we won't prove it, but

you should feel free to use it.

Examples

Let’s now discuss some examples using these functions. The following two ex-
amples both involve the expression sin(1/x). As we will see, functions involving

this expression exhibit a wild variety of interesting pathological behavior.

Exercise 1.2.25. (a) Prove that the function

sin(1/x) ifx #0
0 ifx=0

f(x) =

is discontinuous at 0.
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Possible hint. Show the following.

limsupsin(1/x) =1 liminfsin(1/x) = —1
x—0* x—0+

(b) Prove that the function

xsin(1/x) ifx#0
0 ifx=0

f(x) =

is continuous, but that it is not differentiable at 0.

(c) Prove that the function

x?sin(1/x) ifx #0
f(x) =
0 ifx=20

is differentiable, but that the derivative f’ is not continuous at 0.

The following example, again involving sin(1/x), illustrates a caveat to the
interior extremum theorem exercise 1.2.21: even if f has a local extremum at a

point, it need not be that the derivative “changes sign” at that point.

Exercise 1.2.26. Consider the function f : R — R given by

x* (2 +sin(1/x)) ifx#0
0 if x =0.

f(x) =

(a) Show that f has an absolute minimum at 0.
(b) Show that f is differentiable and calculate the derivative f'.

(c) Show that, on every open interval of the form (a,0) or (0, b), the derivative

f’ takes on both positive and negative values.
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1.3 Differentiable functions

In this section, we’ll discuss some properties of functions which are differentiable

everywhere on their domain.

Definition 1.3.1. Suppose U is an open subset of R. A function f : U — R is
differentiable if it is differentiable at every point in U. The function U — R given
by x — f’(x) is called the derivative of f, and is denoted f’.

Every open subset of R is a countable disjoint union of open intervals® (cf.
[ , theorem 6.17]), so the most important case of the above definition is
when the domain happens to be an open interval. Occasionally, it’s also useful to
have some vocabulary for talking about functions on non-open intervals. Here

is the “correct” definition for doing this.
Definition 1.3.2. Suppose S is any subset of R and f : S — R is a function.

o We say that f is differentiable on the interior if f is differentiable at every
interior point of S (ie, if the restriction of f to the interior S° is differentiable
in the sense of definition 1.3.1). The function S° — R given by x — f'(x) is
called the derivative of f, and is denoted f'.

e We say that f is differentiable if it is the restriction to S of a differentiable
function defined on an open neighborhood of S. The function S — R given
by x — f’(x) is called the derivative of f, and is denoted f’.

Pedantic remark. The reason these definitions are made the way they are is for
precisely the same reasons discussed in the pedantic remark towards the end of

section 1.1.A.

2By the word inferval, we mean an uncountable connected subset of R. This means that intervals
can be open, closed, or half-open; and they can be bounded or unbounded. They cannot be
just a single point.
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1.3.A Mean value theorem

The mean value theorem 1.3.3 is an extremely important foundational result. You
may remember seeing and ignoring it during your first calculus class; at least,
that’s what I did, and I think that’s okay. Its importance largely derives from the
fact that it comes up incredibly frequently when proving things formally about

derivatives.

Theorem 1.3.3 (Mean value theorem). Suppose a < b and let f : [a,b] — R be

continuous and differentiable on the interior. Then there exists c € (a,b) such that

f(b) —f(a)

fle) = b—a

Before proceeding, I encourage you to look at figure 1.3.4 and ensure that you

understand the geometric content of the statement.

Caution. Despite the similar sounding name, the mean value theorem is not
the same as the intermediate value theorem! The intermediate value theorem
asserts that, if f : [a, b] — Ris continuous and y is in between f(a) and f(b), then
there exists ¢ € (a,b) such that f(c) = y. The output of the intermediate value
theorem is a point ¢ where the value of the function itself is some desired value
(specifically, some value between f(a) and f(b)), while the output of the mean
value theorem is a point ¢ where the value of the derivative is some desired value

(specifically, the slope of the secant connecting ((a, f(a)) and (b, f(b)).
Rolle’s theorem 1.3.5 is technically a special case of the mean value theorem,

but the general case can be derived from this special case.

Exercise 1.3.5 (Rolle’s theorem). Suppose a < b and let f : [a,b] — R be continu-
ous and differentiable on the interior. If f(a) = f(b) = 0, prove that there exists
¢ € (a,b) such that f'(c) = 0.

Possible hint. Notice that any function must fall into at least one of the following

three cases: (i) f is constantly zero, (ii) f takes on positive values somewhere on
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Figure 1.3.4: The mean value theorem 1.3.3 states that, if we draw a secant line
connecting two points (a,f(a)) and (b, f(b)) on the graph of a dif-
ferentiable function f, then that secant line must be parallel to the
tangent line of f at some point c in between a and b. The statement
of the mean value theorem only asserts existence, not uniqueness;
there could be multiple points c at which this happens.
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1.3 Differentiable functions

[a,b], and (iii) f takes on negative values somewhere on [a,b]. Deal with the
first case using exercise 1.1.5, and the latter two cases using the extreme value

theorem® together with the interior extremum theorem exercise 1.2.21.

Exercise 1.3.6. Prove the mean value theorem.

Possible hint. Let { be the secant line passing through (a, f(a)) and (b, f(b)). Then
consider the function g = f — (. See figure 1.3.7. Then g(a) = g(b) =0, so we

can apply Rolle’s theorem 1.3.5 to g.

We can use the mean value theorem to prove the following “if and only if

upgrade” of exercise 1.1.5.

Proposition 1.3.8. Suppose 1 is an interval and that f : I — R is continuous and
differentiable on the interior. Then f' = 0 if and only if f is constant.

Proof. We showed in exercise 1.1.5 that f being constant implies f’ = 0. Con-
versely, suppose we have a < b in I. We want to show that f(a) = f(b). Since f
is continuous and differentiable on the interior, the same is true on the compact
subinterval [a, b], so we can apply the mean value theorem on this interval. In

other words, there exists a point ¢ € (a, b) such that

f(b) —f(a)
— =f'(c).
But f’(c) = 0 by assumption, so f(a) = f(b). O

Here are some more consequences.

Exercise 1.3.9. Suppose I is an interval and f : I — R is continuous and differen-
tiable on the interior. Let M be a real number. Show that |f(x)] < M if and only

3The extreme value theorem says that if K is a compact metric space and f : K — R is continuous,
then f achieves its global maximum and its global minimum somewhere on K (cf. [ ,
theorems 3.17 and 6.30]).
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Figure 1.3.7: On the left is depicted the graph of a function f and the secant line
{. Subtracting { from the picture on the left yields the picture on the
right.
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1.3 Differentiable functions

if for all x € Iif and only if
[f(b) — f(a)] < M|b —q

forall a,b € L.

Unimportant remark. Another way of stating the result of exercise 1.3.9 is that
bounds on the derivative of f are equivalent to Lipschitz constants for f. In

particular, having a bounded derivative implies Lipschitz continuity.

Exercise 1.3.10 (Fixed points). Suppose f: R — Ris a function. A fixed point of f
is a point & such that f(&) = &.

(a) Suppose f is differentiable and f’(x) # 1 for all x € R. Prove that f has at

most one fixed point.

(b) Suppose f is differentiable and there exists a constant M < 1 such that
If’(x)] < M for all x € R.* Show that f has a unique fixed point.

Possible hint. Pick any x¢ € R, and then inductively define x,,11 = f(xy,) for
all n. Prove inductively that [x; 11 —xn| < M™[x7 —%ol for all n. Deduce that
the sequence xo, x1,x2, ... is Cauchy, and let & = limx,,. Then show that £

is a fixed point of f.

(c) Suppose f(x) =x+1/(1+exp(x)). Show that f has no fixed points, and that
f is differentiable with 0 < f’(x) < 1 for all x € R. Explain why this does not
contradict part (b).

Exercise 1.3.11 (“Leveling off” vs “flattening out”). (a) Suppose f : (0,00) — R
is differentiable and f(x) — 0 as x — oo (one might say informally that f
“levels oft” near infinity). Show that, if

lim f'(x)
X—>00

4Using the vocabulary of definition 0.3.13, this hypothesis can be rephrased by saying that
1" llsup < 1.
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exists, then this limit must equal 0 (informally, one might say that that f must

“flatten out” near infinity).

(b) Let f: (0,00) = R be defined by

Show that “levels off” but does not “flatten out” near infinity.

Exercise 1.3.12. Suppose f : R — R is differentiable which “flattens out” near
infinity; in other words,
lim f'(x) =0.

X—>00
Let g(x) = f(x + 1) — f(x). Is it true that g “levels off” near infinity (ie, that

g(x) — 0 as x — 00)? If so, prove it. If not, explain why not.

Exercise 1.3.13. Let I be an open interval and a € I. Suppose that f : I — R is
continuous, and suppose further that it is differentiable at every x € I except
possibly at a. If

lim /(%)
xX—a

exists, show that f is also differentiable at a and that f’(a) is equal to this limit.
1.3.B Monotonicity
We begin by recalling the following definition.
Definition 1.3.14. Suppose I is an interval and f : I — R is a function.
o fisincreasing f(x) < f(y) forallx <yinI.
o fisdecreasing f(x) > f(y) forall x < yin L
o fis strictly increasing f(x) < f(y) forallx <y in L

o fis strictly decreasing f(x) > f(y) forallx < yin I.
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Further, f is monotone if it is either increasing or decreasing, and strictly monotone

if it is either strictly increasing or strictly decreasing.
Here are some important properties of strictly monotone continuous functions.

Exercise 1.3.15. Suppose I is an interval and f : I — R is continuous. Prove that

f is injective if and only if f is strictly monotone.

Exercise 1.3.16. Prove that, if I is an open interval and f : I — R is continuous
and strictly monotone, then f(I) is also an open interval. Conclude that f is an
open mabp (ie, that the image of any open subset of the domain is an open subset
of R).

Possible hint. Suppose f is strictly increasingand I = (a, b). Define ¢ = limy_, o+ f(x)
and d = lim,_,,- f(x) and use the intermediate value theorem to prove that

f(I) = (¢, d). Then deal with the case when f is strictly decreasing.

The proofs of the following standard relationships between derivatives and

monotonicity are similar to the proof of proposition 1.3.8.

Exercise 1.3.17 (Derivatives and monotonicity). Suppose I is an interval and that

f: I = Ris continuous and differentiable on the interior.
(a) Prove that f’ > 0 if and only if f is increasing.
(b) Prove that f’ < 0 if and only if f is decreasing.

Possible hint. You could basically repeat your proof of part (a) for part (b). Alter-

natively, notice that f is decreasing if and only if —f is increasing.

Exercise 1.3.18 (Derivatives and strict monotonicity). Suppose I is an interval
and that f : I — R is continuous and differentiable on the interior. Prove the

following.

(a) If f' > 0, prove that f is strictly increasing.
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(b) If f" < 0, prove that f is strictly decreasing.

(c) Unlike exercise 1.3.17, the above two statements on strict monotonicity cannot
be upgraded to “if and only if” statements. Give an example of a strictly
increasing function f : R — R for which there exists some a € R such that
f'(a) = 0.

(d) Notice that your proof of “f’ > 0 implies increasing” from exercise 1.3.17
part (a) and “f’ > 0 implies strictly increasing” from part (a) of this exercise
are basically the same, except that all instances of “>" get replaced by “>.”
Now inspect your proof of “increasing implies f' > 0” from exercise 1.3.17

part (a). Why can’t you just replace all instances of “>" with “>"?

Exercise 1.3.19. Suppose f : R — R s differentiable and there exists M > 0 such
that |f/(x)| < M for all x € R. Is it true that there must exist € > 0 such that the
function g : R — R given by

g(x) =x+ ef(x)

is strictly increasing? If so, prove it. If not, explain why not.

Again, there are pathologies involving monotonicity than can be exhibited by
functions involving sin(1/x). Here is an example of a function whose derivative

is positive at a single point, but it is not monotone near that point.

Exercise 1.3.20. Let f : R — R denote the function

x + 2x?sin(1/x) if x # 0
0 if x =0.

f(x) =

(a) Show that f is differentiable and calculate f’. In particular, show that f'(0) =
1.

(b) Show that f is not monotone on any open interval containing 0.
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1.3 Differentiable functions

(c) Explain the “2” that shows up in the definition of f. Could it be replaced by
1 without changing the property of f you proved in (b) above? Could it be
replaced by 3? What is the set of all real numbers that it could be replaced
with?

1.3.C Concavity

Here is a word you probably recognize from calculus, but perhaps you haven't

seen a formal definition.

Definition 1.3.21. Suppose I is an interval and f : I — R is a function. We say

that f is concave up (or convex) if

f(y)—f(X)<f(Z)—f(y)
y—-x  z—y

for all x <y < zin I. See figure 1.3.22. We say that f is strictly concave up (or

strictly convex) if

fly) =1l _ flz) — fy)
y—x -y
for all x <y < zin I. Similarly, we say that f is concave down (or just concave) if

fly) —flx) _ flz) —fy)
y—x = z—y
for all x < y < z in I, and we make an analogous definition for strictly concave

down (or just strictly concave).
Notice that f is (strictly) concave down if and only if —f is (strictly) concave up.

Lemma 1.3.23. Suppose 1 is an interval. A function f : 1 — R is concave up if and only
if
fly) —f(x) _ f(z) = () _ f(z) = fly)
y—x  z—x z—y

forallx <y <zinl
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1 Single variable derivatives

Figure 1.3.22: A function f is defined to be concave up in definition 1.3.21 if the
slope of the secant connecting (x, f(x)) and (y, f(y)) is less than or
equal to the slope of the secant connecting (y, f(y)) and (z, f(z))
for all x <y < z. Lemma 1.3.23 says that, in this situation, the
slope of the secant connecting (x, f(x)) and (z, f(z)) is in between
the other two slopes.

Proof. Clearly the double inequality in the statement of the lemma implies the
single inequality in the definition. The proof of the converse is a rather unen-

lightening string of inequalities.

(z—y)(fly) —f(x)) <
zf(y) — zf(x) — yf(y) + yf(x) <
zf(y) — zf(x) + yf(x) <

(y —x)(f(z) — f(y)) (1.3.24)
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We'll take equation (1.3.24) and manipulate it to prove the two inequalities in the
statement of the lemma.

First, if we take equation (1.3.24) and move the yf(x) and xf(y) terms to the
opposite sides, and then add in xf(x) to both sides, we see that

~
y—x zZ—X

which is one of the inequalities. On the other hand, if we move the yf(z) and
zf(y) terms to the opposite sides in equation (1.3.24), and then add in zf(z) to
both sides, we see that

(z—y)(f(z) — f(x))
flz) —f(x) _ f(z) — fy)
z—x  z—y

which is the other inequality. O

Unimportant remark. The proof above shows that either one of the two inequalities

in the statement of lemma 1.3.23 implies that f is concave up.

Exercise 1.3.25. Suppose f : [0,00) — R is concave up and that f(0) = 0. Show
that the function g : (0, 00) — R defined by

is increasing.
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Here are some facts about how concavity relates to differentiation that you

likely recognize from calculus.

Exercise 1.3.26 (Concavity and extremums). Let I be an open interval. Suppose

f: I — Ris differentiable at a point a € I and f’(a) = 0.
(a) If f is concave up, show that a is an absolute minimum of f.
(b) If f is concave down, show that a is an absolute maximum of f.

(c) If f is strictly concave up, does it follow that a is a strict absolute minimum

of f? If so, prove it. If not, give a counterexample.

Possible hint. If k < 0 < h and f is concave up, then

fla+k)—f(a) o fl(a+h) —f(a)
k h h ‘
Let k — 0~ to show that a is a minimum on its right, and proceed similarly for

the left.

Exercise 1.3.27 (Concavity and derivatives). Suppose I is an open interval and

f: 1 — Ris differentiable. Prove the following.

(a) fis concave up if and only if f’ is increasing.

(b) fis concave down if and only if ' is decreasing.

(c) fis strictly concave up if and only if f’ is strictly increasing.

(d) fis strictly concave down if and only if f’ is strictly decreasing.

Possible hint. If f' is (strictly) increasing, apply the mean value theorem 1.3.3 to
prove that f is (strictly) concave up. If f is concave up, suppose we have a < b in

I. Let x and y be such that a < x <y < b. Explain why

f(x) — f(a) _ f(b)

—fly)
x—a = b-y

)
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and then let x — at and y — b~. The case when f is strictly concave up is a bit
trickier (roughly because taking a limit can turn a < into a <), but one possible

correct proof is a slight variant of the same idea.

1.3.D Darboux’s theorem x

Darboux’s theorem asserts that derivatives are often “close” to being continuous,
but in a weird way: they cannot have “simple” discontinuities, which means that

when they are discontinuous at all, they are discontinuous in wild ways.

Intermediate value property

Before getting to the precise statement, we make the following definition.

Definition 1.3.28. Suppose I is an interval and f : I — R is a function. Then f
has the intermediate value property if, for every a < b in I and every y € R strictly
between f(a) and f(b), there exists x € (a,b) such that f(x) =y.”

Using this vocabulary, the intermediate value theorem asserts that every con-
tinuous function has the intermediate value property [ , theorem 3.3]. Sim-
ple examples of discontinuous functions don’t have the intermediate value prop-
erty (cf. exercise 1.3.29 below). But, it turns out that some fairly bizarre discon-
tinuous functions do have the intermediate value property (cf. exercise 1.3.30

below).
Exercise 1.3.29. Let I be an interval and f : I — R a function.

(a) Recall that f has a removable discontinuity at a point a € I if

lim f(x)

X—a

SFunctions which have the intermediate value property are sometimes also called Darboux func-
tions.
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1 Single variable derivatives

exists, but the value of this limit does not equal f(a). Show that, if f has a re-

movable discontinuity, then f does not have the intermediate value property.

(b) Recall that f has a jump discontinuity at a point a € I if the two one-sided
limits
lim f(x) and lim f(x)
x—a- x—at

both exist, but their values are not equal to each other. Show that, if f has a

jump discontinuity, then f does not have the intermediate value property.

Exercise 1.3.30. Consider the function f : R — R defined by

sin(1/x) ifx #0
0 if x =0.

We know from exercise 1.2.25 that this function is discontinuous at 0. Show that

it has the intermediate value property.

Possible hint. First show that for any interval I containing 0, we have f(I) = [-1,1].

Then explain how this implies the intermediate value property.

Statement of Darboux’s theorem

We know that the derivative f’ of a differentiable function f need not be contin-
uous (cf. exercise 1.2.25). Darboux’s theorem asserts that, even though f’ might
not be continuous, it must still have the intermediate value property! This means,
for example, that derivatives cannot have removable or jump discontinuities (be-
cause, as we saw in exercise 1.3.29, functions with these kinds of discontinuities

do not have the intermediate value property).

Theorem 1.3.31 (Darboux). Suppose 1 is an open interval and f : I — R is differen-

tiable. Then f' has the intermediate value property.

We noted earlier that the intermediate value theorem and the mean value

theorem make similar but different assertions. Darboux’s theorem now gets
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Intermediate value theo- Mean value theorem Darboux’s theorem
rem
If f: [a,b] - R continuous continuous and differen-  differentiable
is... tiable on the interior
and y is strictly in be- and m is strictly in be-
tween f(a) and f(b) tween f’(a) and f’(b)
f(b) —f
then there exists f(c)=1y. f'(c) = (b) (a) f'(c) = m.
R b—a
c in (a,b) such
that...

Table 1.3.32: A tabular comparison of the statements of the intermediate value
theorem, the mean value theorem, and Darboux’s theorem.

added to the fray! I encourage you to ensure that you understand how the
statements of these three theorems differ (cf. table 1.3.32).

Most functions that one encounters in life have continuous derivatives. In other
words, most of the time, the fact that a derivative we're interested in has the inter-
mediate value property would follow immediately from the intermediate value
theorem. This makes Darboux’s theorem not terribly important going forward,

but it is a very interesting result nonetheless. Here are some applications.

Exercise 1.3.33. Suppose I is an open interval and f : I — R is a differentiable

function such that f'(x) # 0 for all x € I. Show that f is strictly monotone.

Exercise 1.3.34. Let I be an open interval. Suppose f : I — R is a differentiable
function and a € Iis a point such that the one-sided limits

lim f'(x) and lim f'(x)
Xx—a~ x—at

both exist (but are not assumed to be equal). Show that f’ is continuous at a (in

particular, this means that the above one-sided limits are forced to be equal).

75



1 Single variable derivatives

Proof of Darboux’s theorem

Proof of Darboux’s theorem 1.3.31. Suppose a < b are two elements of I and m is a
real number strictly between f’(a) and f'(b). This means that either f'(a) < m <
f/(b) or f'(a) > m > f’(b). Let us suppose that f'(a) < m < f’(b) (the proof in
the other case will be analogous). We want to show that there exists ¢ € (a,b)
such that f'(c) = m. We will prove this by considering an associated extreme
value problem, and then applying the extreme value theorem.

Specifically, consider the differentiable function g : I — R defined by g(x) =
f(x) — mx. See figure 1.3.35. Notice that

so f’(c) = m if and only if g’(c) = 0. In other words, we would like to show
that there exists ¢ € (a,b) such that g’(c) = 0. By the extreme value theorem,
we know that g attains its minimum on the compact interval [a, b] at some point
¢ € [a,b]. We claim that c must be an interior point of [a, b], and then interior
extremum theorem 1.2.21 will imply that g’(c) = 0.

If ¢ = a were the minimum of g on [a, b], then we would have

gla+h)—g(a)

n >0

for all sufficiently small positive values of h. This would mean that

f/(a)_m:g/(a) — lim 9(a+h)_g(a)

>0
h—0+ h -

which is a contradiction since f/(a) < m. Similarly, if ¢ = b were the minimum

of g on [a, b], then we would have

g(b+h)—g(b)

n <0
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Figure 1.3.35: On the left is depicted the graph of a function f, the two tangent
lines at a and b, and the graph of the line {(x) = mx for some m in
between f’(a) and f’(b). Subtracting ¢ from this picture yields the
picture on the right.

for all sufficiently small negative values of h. This would imply that

f'(b) ~m=g'(b) = lim_ g(b +h}i— 9(b) _

0,

which again is a contradiction since m < f’(b). Thus we conclude that ¢ € (a, b).
If instead we had f'(a) > m > f’(b), we would define ¢ to be the point in [a, b]
where g attains its maximum. A similar argument then shows that ¢ must be an

interior point. O

1.3.E Inverse function theorem

Theorem 1.3.36. Suppose that 1 is an open interval, that f : I — R is differentiable,
and that f'(x) # O for all x € 1. Then f is strictly monotone, the inverse function
f=1: (1) — R is differentiable, and

1

—1y7 _
= F )
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forally e f(I).

Proof. Exercise 1.3.33 tells us that f is strictly monotone, and then exercise 1.3.16
tells us that f(I) is an open interval and that f is open, ie, that f~1 is continuous.

To see that f~! is actually differentiable, fix y € f(I) and let x = f~' (y). For each
k, define

hik)=f"(y+k —f'(y).

Rearranging, this is equivalent the following.

1y +k) =1 (y) + h(k)
1y +k) =x+h(k)
y + k = f(x + h(k))
k = f(x + h(k))
(

-y
k = f(x + h(k)) — f(x)
Thus, for any nonzero k, we have
fly+k)—f'(y) hk) h(k) B 1
k  k f(x+h(k)—f(x) <f(x+h(k))f(x)>
h(k)

where for last step, we have used the fact that h(k) # 0 for all nonzero k since =1
is injective. Since f~1 is continuous at y, we have h(k) — 0 as k — 0. Thus the
denominator on the far right above tends to f’(x) = f’ (f~T(y)) as k — 0. Since

the limit of the denominator is nonzero by assumption, the result follows from
the quotient rule for limits. O

Exercise 1.3.37 (Power rule for fractional exponents). Extend the result of exer-

cise 1.2.8 to arbitrary rational exponents (ie, to exponents that can be written in
the form m/n where m and n are both integers).
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Exercise 1.3.38. If f(x) = In(x), prove that f'(x) = 1/x. You can use the facts
that In : (0,00) — R is the inverse of the exponential function, and that the

exponential function is its own derivative.

1.3.F Uniform limits %

Derivatives interact somewhat strangely with limits. First off, here is an example

to show that uniform limits of differentiable functions need not be differentiable.

Exercise 1.3.39. For any positive integer n, let f,, : R — R be the function

fr(x) =4/x? + %

(a) Show that f,, is differentiable.
(b) Show that the f,, converge uniformly to the absolute value function f(x) = |x|.

(c) Show that the derivatives f;, converge pointwise but not uniformly.

In fact, even if a uniform limit of differentiable functions is differentiable, we
cannot guarantee that the derivative of the limit is the limit of the derivatives; in

fact, the derivatives need not converge at all.

Exercise 1.3.40. For any positive integer 1, let f;, : R — R be the function

f(x) = sinilnx) .

(a) Show that f,, is differentiable.
(b) Show that the f,, converge uniformly to 0.

(c) Show that the derivatives f;, do not converge pointwise.

As suggested by part (c) of the previous two exercises, what we really need in
order to have well-behaved interaction between limits and derivatives is uniform

convergence of the derivatives, rather than of the functions themselves.
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Theorem 1.3.41. Suppose U is an open subset of R and fr, : U — R is a differentiable
function for each n = 0,1,... such that limf,, = f pointwise. If the derivatives f;,

converge uniformly on compact subsets of U, then f is differentiable and lim f], = f’.

Proof. Set g = limf;,. Fix a € U and consider the following “slope of secant”

functions (as in the first proof of the chain rule in section 1.2.C).

fn(a+h)—fn(a)

o () - ifh#0
fl (a) ifh=0
fla+h)—f(a) .

o(h) = " ifh#0
g(a) ifh=0

Continuity of 0, and o away from h = 0 is clear. At h =0, we know that oy, is
continuous because f,, is differentiable at a. Note moreover that o,, converges
pointwise to o.

If we can show that o is continuous at 0, then f is differentiable at a and
f'(a) = g(a) = limf], (a), which is what we ultimately want to prove. To show
that o is continuous at 0, our strategy is to prove that o,, converges uniformly to
o on a compact interval I containing 0 (not just pointwise, which we’ve already
observed above). Then we can invoke the theorem guaranteeing that uniform
limits of continuous functions are continuous (cf. [ , theorem 9.13]) in order
to conclude that o is continuous.

Observe that for any pair of integers m,n and any h € I\ {0}, we have

(fm(a+h)—fa(a+h)) — (fm(a) —fn(a))

om(h) —on(h) = h :f%(a)_fit(a)v

where for the last step we have applied the mean value theorem to the function
fm — fn on the closed interval between a and a + h to find & strictly between a
and a + h. Moreover, we have 0y, (0) — 0, (0) = f/,(a) — ], (a). In other words,

if we set ] = {a + x : x € I}, then for every h € I, there exists & € ] such that
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om(h) —on(h) =], (&) — £/ (&), which implies that
lom — O-anu]D,I < ”fT/n - f1/1”sup,]-

Since the derivatives converge uniformly on the compact interval |, they are
uniformly Cauchy. It follows from the above inequality that the o, are also
uniformly Cauchy, and therefore uniformly convergent. Since o is the pointwise
limit of the o, it must also be the uniform limit; in other words, we have now

proved that 0y, converges uniformly to o, as we wanted. O

Unimportant remark. The hypotheses of this theorem can be made weaker by
only assuming that the functions f,, converge just at a single point rather than
pointwise on all of U, but one still needs to assume uniform convergence of the
derivatives on compact subsets [ , theorem 7.17]. The idea of the proof of
this generalization is similar to the proof above, but the flow of the argument

gets obscured by more technical details.

This theorem lets us prove that we can differentiate power series term-by-term.

Theorem 1.3.42. Suppose the power series Y oy anx™ has a nonzero radius of con-

vergence R. Then the function f : (—R,R) — R given by

o0
f(x) = Z anx™
n=0
is differentiable and
o
f'(x) = Z napx™!
n=0

Moreover, the radius of convergence of the power series Y o_,nanx™ ! isalso R.

Proof. Let

fo(x) =ap+ajx—+---+ anx™
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be the sequence of the partial sums of the power series. Then clearly lim f, = f
pointwise. The conclusion of theorem 1.3.42 would therefore follow by applying
theorem 1.3.41 to the sequence f;,, provided we first show that f/, converges
uniformly on compact subsets of (—R, R). To prove this, it is sufficient to show

that the radius of convergence of the power series
Z napx™!
n=0

is also R. Let R’ denote the radius of convergence of this power series; we want
to show that R” = R. We also know that

1
— =limsup lan|'/™.
R o

Observe that

1
—; = limsup nay /M= = hmsup(lnanﬂ/n)n/(nq).
R n—oo n—oo

Since limn'/™ =1 and limn/(n — 1) = 1, we conclude that R = R’. O

Exercise 1.3.43. Verify that, if the exponential, sine, and cosine functions are
defined by their power series as in equation (1.2.24), then their derivatives are

calculated by the formulas we stated in section 1.2.E.

1.4 C* hierarchy

1.4.A Continuous differentiability

We saw in section 1.3.D that the derivative of a differentiable function is always
“close” to being continuous, though in a slightly bizarre way. Insisting that
the derivative actually be continuous is often useful for ruling out pathological

behavior.
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1.4 CX hierarchy

Definition 1.4.1. Suppose Uis an open subset of Rand f : U — Ris differentiable.
If the derivative f’ : U — R is also continuous, then f is said to be continuously
differentiable.

Here is an important “reasonableness” property of continuously differentiable

functions.

Exercise 1.4.2. Show that, if f : U — Ris continuously differentiable, then the set
C={xelU:f'(x)=0}

is a closed subset of U.

Exercise 1.4.2 actually tells us that lots of strange pathological behavior is
ruled out by insisting that the derivative is continuous. For example, we saw
in exercise 1.3.20 that f(x) = x + 2x?sin(1/x) defined a differentiable function
f : R — R such that f’(0) # 0, but which is not monotone on any interval
containing that point. This is rather bizarre behavior, and it cannot happen with

continuously differentiable functions.

Exercise 1.4.3. Suppose f : U — R is continuously differentiable, and a € U is a
point such that f'(a) # 0. Use exercise 1.4.2 to conclude that there exists an open

interval containing a on which f is strictly monotone.

To appreciate the following fact, it’s worth noting the following: there exist
non-constant differentiable functions f : U — R such that f’(x) = 0 for all x €
U N Q! These extremely bizarre functions were first found by Pompeiu [ ].
This pathological behavior is also ruled out by insisting that the derivative be

continuous.

Exercise 1.4.4. Suppose f : U — R is continuously differentiable. Use exer-
cise 1.4.2 to show that, if f/(x) = 0 for all x € U N Q, then f is constant.
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1 Single variable derivatives

Unfortunately, insisting that the derivative of a function be continuous does
not rule out all possible bizarre behavior. For example, in exercise 1.2.26, we saw
that f(x) = x* (2 + sin(1/x)) defined a differentiable function f with an absolute
minimum at 0, but the derivative doesn’t just simply “change sign” at 0. In fact,
it turns out that function is also continuously differentiable (cf. exercise 1.4.5),
so merely insisting on continuous differentiability does not quite manage to rule
out that kind of pathological behavior. However, as it turns out, the derivative
of f/ (called the “second derivative” of f, and denoted f”'), turns out not to be

continuous.

Exercise 1.4.5. Let f : R — R be the function from exercise 1.2.26. Show that f’
is differentiable (so, in particular, f is continuously differentiable), but that f” is

not continuous.

This leads us to thinking about iterated derivatives.

1.4.B CX functions

Definition 1.4.6. Let U be an open subset of Rand f : U — R a function. We then
define the following.

e fissaid to be CC if it is continuous.

f is said to be C! if it is continuously differentiable.

fis said to be C? if it is differentiable and f’ is C'. In this case, the derivative

(f')’ of f' is called the second derivative of f, and is denoted either f” or f(2).

f is said to be C3 if it is differentiable and f’ is C2. In this case, the second
derivative (f')” of f’ is called the third derivative of f and is denoted f(3).

f is said to be C* if it is differentiable and f’ is C3. In this case, the third
derivative (f')(3) of f’ is called the fourth derivative of f and is denoted f (4),
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1.4 CX hierarchy

Inductively, for any positive integer k, f is said to be C* if it is differentiable and
f/ is C*=1. In this case, the (k — 1)st derivative (f’)(k=1) of f’ is called the kth
derivative of f and is denoted f(*).

First up, let’s prove that all reasonable ways of combining functions in a
particular differentiability class stays within that differentiability class.
Exercise 1.4.7. Prove that the set of all C* functions U — R is a vector space.

Possible hint. Induct on k.
Exercise 1.4.8. (a) Prove that the product of any two C* functions is also C*.

(b) If f,g : U — R are C* functions, show that

k

K\ 0 s
(i) = <i>fmg(k 0

i=0
Exercise 1.4.9. Show that the composite of two C* functions is also C¥.

Possible hint. Induct on k. The base case k = 0 is clear. For the inductive step,

use the chain rule 1.2.9 and exercise 1.4.8(a).

Exercise 1.4.10. Suppose f: U — R is Ck and f(x) # 0 for all x € U. Show that
1/f is also CX.

Possible hint. You might first show that the function g(x) = 1/x is Ck for all k.
Then 1/f = g o f, so you can apply exercise 1.4.9.

Proposition 1.4.11. Suppose 1 is an open interval, f : 1 — R is injective, C* for some
k > 1,and that f'(x) # 0 forall x € 1. Then =1 : f(I) — W is also C¥.

Proof. Since f’ is nonzero on I, we know from theorem 1.3.36 that f~! is differen-

tiable and that |

—1y7 _
O = Ty
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1 Single variable derivatives

In other words, (f~ ')’ is the composite of three functions: =1, f, and the
function x — 1/x.

We will inductively prove that f=! is C" for all 0 < T < k. Certainly ' is
CO (ie, continuous), since it is even differentiable, as we saw above. Inductively,
suppose f~1is C" for some 0 < v < k. We know that f is C* and therefore C7,
and also that x — 1/x is C" (cf. exercise 1.4.10), so (f~')’ is the composite of
three C™ functions. Thus exercise 1.4.9 tells us that (f~')’ is C", which shows
that f~! is C™*'. This completes the induction. O

Observe that exercise 1.1.6 tells us that we have an infinite chain of implications
= = C? = C' = C°.
The following shows that all of these implications are strict; in other words, for
every k, there existsa C K function which is not Ck*71.

Exercise 1.4.12. For any non-negative integer k, let
fie(x) = x*Ixl.

See figure 1.4.13. Prove that fy is C¥, but the (k + 1)st derivative f (k+1) does not

exist.

Possible hint. First prove that f} | ; = (k + 2)fy.

Exercise 1.4.14. For any positive integer k, let fx : R — R be the function given
by

x**tTsin(1/x) if x #0

0 if x =0.

fi(x) =

Show that the kth derivative f(¥) exists, but it is not continuous.

Here is a property of C? functions you likely recognize from calculus.
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1.4 CX hierarchy

AV _/

Figure 1.4.13: Graphs of the functions fy (x) = x*[x| for k = 0,1, 2, 3.

Exercise 1.4.15. Suppose I is an open interval and f: I — R is C2.
(a) Show that f is concave up if and only if f”/ > 0.

(b) Show that f is concave down if and only if f” < 0.

Exercise 1.4.16. Suppose I is an open interval and f: I — R is C2.
(a) Show that, if f”/ > 0, then f is strictly concave up.

(b) Show that, if f” < 0, then f is strictly concave down.

(c) Unlike exercise 1.4.15, the above two statements cannot be upgraded to “if
and only if” statements. Give an example of a strictly concave up function

f: R — R for which there exists some a € R such that f”(a) = 0.

1.4.C Taylor’s theorem x

Taylor’s theorem gives us a way of approximating a C* function by a polyno-
mial of at most degree k. When k = 1, the theorem says nothing more than

proposition 1.1.9.
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1 Single variable derivatives

Theorem 1.4.17 (Taylor). Suppose 1 is an open interval, f : 1 — R is C¥ for some
non-negative integer k, and a € 1. Then there exists a unique polynomial py at most k,
called the degree k Taylor polynomial of f at a, such that [f(a+h) —py (h)| = o([h[¥)

as h — 0. Moreover, we have

f £(k)
px(h) =f(a) +f'(a)h + h? + h 4+ 4 (a)

k
5 3 SohE (41)

Proof. Let px(h) be defined as equation (1.4.18) and set r(h) = f(a + h) — pk(h).
Observe that r is C¥ by exercise 1.4.7. By direct calculation, we have r(0) =0
foralli =0,1,...,k. If k = 0, then the fact that |[r(h)| = o(1) follows from the
continuity (ie, CO-ness) of r and the fact that 7(0) = 0; so we can assume for the
rest of the proof that k > 1.

Suppose h > 0. By iterating the mean value theorem, we have

r(h) =r(h) —r(0)
=1'(hi)h = (r'(hy) —r'(0))h
=1"(h2)hih = (v"(h2) —r"(0))hsh

=7 D (he_1)hg_2hk—3---hahth

88



1.4 CX hierarchy

where 0 < h_7 < --- < hy < hy < h. This means that

it | Y () hg—2---hohyh
|h|k - hk
< T(k*])(hki‘l)hkf]
hk
D ()
N h
< =D (hy_q)
hy—1
e (hyeq) — (= 1(0) ’
hx 1 ’

Now as h — 07, we also have that hy_1 — 0, so this final expression tends to

r®0) =o0. By the squeeze theorem, we conclude that

r(h)]

ho0+ |hlk

One argues similarly with h < 0 to prove that

bl
h—0— |h|k
In this case, we have h < h; < hy, < .-+ < hx_7 < 0. This proves that

[r(h) = o(|h/*).
To prove that py is unique, suppose q is any polynomial of degree at most k
such that [f(a + h) — q(h)| = o(|h/*). Then

Ipk(h) —q(h)[ < [f(a+h) —pr(h)[+[fla+h) —q(h)]

so exercises 0.1.6 and 0.1.7 imply that |py(h) — q(h)| = o(/h|¥). Butpx —qisa
polynomial of degree at most k, and a nonzero polynomial of degree at most k
cannot be o(|h/¥) as h — 0. So we must have py. = q. O
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Unimportant remark. It's worth remarking that Taylor’s theorem does not use the
fact that (%) is continuous; it merely requires that f (k) exists, ie, that f is k times
differentiable. This is evident in the proof above.

The difference
r(h) =f(a+h) —pk(h)

is often called a “remainder,” since it’s what’s left over after we approximate f
by its Taylor polynomial. When k = 1, this is precisely the remainder function

we discussed in remark 1.1.11.

Exercise 1.4.19 (L'Hopital’s rule, less weak version). Suppose f,g : U — R are

Ck functions for some k > 1 and

and g(®)(a) # 0. Prove that

i T09 _ F(a)
x2agl) g™ (a)’

Possible hint. Mimic the proof of exercise 1.1.13, but now use r(h) = f(a + h) —
px(h) instead of r(h) = f(a + h) —p1(h).

Exercise 1.4.20. Suppose f : U — Ris C? and a € U is a point such that f'(a) = 0.

(a) Show that, if f”(a) > 0, then a is a strict local minimum of f, and that if

f"(a) < 0, then a is a strict local maximum of f.

Possible hint. You can do this using exercises 1.3.26 and 1.4.16. Alternatively,
you can do it using Taylor’s theorem 1.4.17. Try both methods. It’s the
Taylor’s theorem method that will be more helpful for part (c) below. You
may also notice that the first method really requires that f be C?, while the
Taylor’s theorem method only requires that f be twice differentiable.
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(b) Give examples to show that, if f”(a) = 0, then the test from part (a) is entirely
inconclusive: a could be a strict local extremum (of either type), a non-strict

local extremum (of either type), or not a local extremum at all.

(c) Suppose fis C* for some k > 2, that

and that f(*)(a) # 0. Formulate and prove a rule that uses the sign of f ®) ()
and/or the parity of k to determine whether or not a is a local extremum,

and if it is a local extremum, what kind of local extremum it is.

We now return to our discussion of the pathology exhibited by the function
f(x) = x* (24 sin(1/x)) from exercises 1.2.26 and 1.4.5, which has the strange
property that f/(0) = 0 but f is not monotone on any interval to the left or to
the right of 0. Such pathologies cannot occur if the function eventually has a

nonzero derivative.
Exercise 1.4.21. Suppose f is C* for some k > 2, that
f'la) =fP(a)=--- = (a) =0
and f(¥)(a) # 0. Prove that there exists an € > 0 such that f is strictly monotone
on(a—e¢,a)and on (a,a + €).

Example 1.4.22. Let f : R — R be the function f(x) = x*(2 + sin(1/x)) of exer-
cises 1.2.26 and 1.4.5. Then f is twice differentiable and f’(0) = f”(0) = 0, but
it is not thrice differentiable at 0. In other words, it doesn’t eventually have a

nonzero derivative at 0, so we’re not able to apply exercise 1.4.21.

It turns out that if f is C¥*!, we can use the mean value theorem to express

the remainder in terms of the (k + 1)st derivative.
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Theorem 1.4.23 (Taylor’s theorem with remainder, Lagrange form). Suppose 1 is
an open interval, f : 1 — R is C¥+1 for some non-negative integer k and a € 1. Then
for any hsuch that a + h € 1, there exists & between a and a + h such that

f(k+1)(£‘)hk+1

fla+h) —pu(h) = g,

where py is the degree k Taylor polynomial of f at a.

Proof. When k = 0, we have pp(h) = f(a) and the statement follows immediately
from the mean value theorem 1.3.3. So we can assume that k > 1. Let r(h) =
f(a 4+ h) — pk(h). Fix h > 0 and consider the function
r(h)
g(t) =r(t) — WtkH-
Plugging in t = h, we see that g(h) = 0. As we noted in the proof of Taylor’s
theorem 2.5.33, we have 1) (0) = 0 fori =0, 1,...,k, from which it follows that

g (0)=0fori=0,1,...,k Moreover, we have

g™t () = f0+ () — (k ‘;lilr(h))
because py is a polynomial of degree at most k, which means that its (k + 1)st
derivative vanishes.

Since g(0) = g(h) = 0, Rolle’s theorem 1.3.5 tells us that there exists hy between
0 and h such that g’(h;) = 0. Since g’(0) = g’(hq) = 0, Rolle’s theorem again
gives us h, between 0 and h, such that g?(hy) = 0. Inductively, we find a
sequence 0 < hy 1 < hx < hx_1 < --- < hy < hsuch that gm(hi) = ( for all
1=0,...,k,k+ 1. Letting & = hy1, we find that

(k+1'r(h)

0=g!H(g) = () — =i,
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and rearranging this equation yields precisely

flk+1) (&) )

fla+h) —pu(h) = () = o

The proof when h < 0 is analogous. O

1.4.D Smooth functions

Insisting that a function be C¥ for larger and larger values of k rules out more

and more pathological behavior. This suggests the following.

Definition 1.4.24. A function f : U — Ris said to be C*, or infinitely differentiable,

or smooth, if it is C* for all k.

It’s a little annoying that there are three different words that all mean the same
thing, but that’s just how it is; all three are commonly used in the mathematical
literature, so it’s best to get used to all of them. We’ll usually use the word
“smooth.”

It follows immediately from exercises 1.4.7 to 1.4.10 and proposition 1.4.11
that sums, scalar multiples, products, reciprocals, composites, and inverses of
smooth functions are also smooth.

The class of smooth functions is very well-behaved. On the one hand, as
we have already seen, smoothness rules out lots of pathological behavior. For
example, functions like exercise 1.3.20 are not smooth, and in fact, if the derivative
of a smooth function f is nonzero at a single point, then f must be strictly
monotone in a neighborhood of that point (cf. exercise 1.4.3). We've also seen
that functions like the one from exercise 1.2.26 and example 1.4.22 are not smooth,
and that if f is smooth and a is a local extremum and eventually f has a nonzero
derivative at a, then in fact the derivative of f must “change sign” at a (cf.
exercise 1.4.21).

On the other hand, the class of smooth functions is not overly restrictive. There
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is a vast array of smooth functions, and we can tailor smooth functions to almost

arbitrary specifications.

Diffeomorphisms

Our first example of this principle is the following smooth bijection (—1,1) — R
whose inverse is also smooth. A smooth bijection with a smooth inverse is also
called a “diffeomorphism.” Roughly, the fact that there exists diffeomorphism
(—1,1) = R “smoothly stretch out” (—1, 1) to all of R, and also “smoothly shrink”
all of R down to (—1,1).

Example 1.4.25. Consider the function f : (—1,1) — R defined by

X

=757

See figure 1.4.26. Since this is a quotient of two smooth functions and the
denominator isnonzero on (—1, 1), this function is also smooth. We can calculate

that
14+ x2

0 =f ey
and we can see from this formula that the derivative is always strictly positive, so
f is strictly increasing (cf. exercise 1.3.18). In particular, it is injective. Moreover,
we have

lim f(x)=-oc0 and lim f(x) = +oo
x——1+ x—1-

so the intermediate value theorem guarantees that f is bijective. Thus the inverse
function f~! : R — (—1,1) exists. Finally, since f’ is always nonzero, it follows

from proposition 1.4.11 that f~1 must be smooth. It is possible to verify that

=TV 4+

-1
7' (x) 7

by check that composing this formula with f yields the identity, but, thanks to
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Figure 1.4.26: The graph of a diffeomorphism (—1,1) — R.
proposition 1.4.11, we don’t actually need this formula for f~! at all to know that
f~1 is smooth.

Of course, there’s nothing special about the open interval (—1,1). In fact, we

can construct a diffeomorphism between any pair of open intervals!

Exercise 1.4.27. (a) For real numbers a < b, construct a diffeomorphism f :
(a,b) > R.

(b) Show that the exponential function is a diffeomorphism R — (0, co).

(c) Construct a diffeomorphism R — (a, co) for any real number a.

(d) Construct a diffeomorphism R — (—o0, a) for any real number a.

(e) If I and I’ are both open intervals, show that there exists a diffeomorphism
f:I1—=T.

Infinitely flat functions

We next discuss an example of a smooth function which gets “infinitely flat” at

0, but is not constantly equal to 0. But first, a preliminary remark.
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Remark 1.4.28. Here is a fact that you might recognize:
lim — =0 (1.4.29)

for any non-negative integer m. We’ll use this fact, and also the related fact that

e—]/x

lim =0

x—0+ x™M

for any non-negative integer m, which follows immediately from equation (1.4.29)
by making the substitution u = 1/x.

You probably remember proving equation (1.4.29) using 1'Hopital’s rule in
your calculus class. We haven't proved 1'Hopital’s rule (except for the weak
version in exercise 1.1.13 and then the less weak version in exercise 1.4.19, nei-
ther of which proves equation (1.4.29)), but you can find proofs of 'Hopital’s
rule in many places (eg, [ , theorem 4.15], [ , theorem 5.13], or even
Wikipedia). The proof is a clever application of the mean value theorem 1.3.3.

An alternative proof of equation (1.4.29) uses the power series definition of the

exponential function. The idea is to notice that

um ym (m—Th = (m+k)

As u — oo, the first few summands all tend to 0, and the series at the end tends
to co. Equation (1.4.29) follows from this; details are omitted, but you should be
able to work them out yourself if you're interested.

Exercise 1.4.30. Consider the function f : R — R defined as follows.

e /% ifx>0

0 ifx <0

f(x) =

See figure 1.4.31.
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Figure 1.4.31: The graph of the function f from exercise 1.4.30 that is “infinitely

(a)

flat” at 0.

Check that
e—]/x
flix) =< x?
0 if x <0.

ifx >0

Possible hint. You can compute f’(x) for x # 0 using the usual rules for
differentiation. The standard differentiation rules from calculus don’t apply
at x = 0, so you'll have to use a different argument to prove that f'(0) = 0. I
can think of two possible strategies: (i) you could use the definition of the
derivative 1.1.2, or (ii) you could use your calculations of f’(x) for x # 0 plus

exercise 1.3.13. In either case, you'll probably need to use remark 1.4.28.

Check that
671/x

£1(x) = p2(x) - —a ifx >0

0 ifx <0
where p; is the function py(x) =1 — 2x.

Possible hint. Like in the previous part, you'll have to give a special argument
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to prove that f”(0) = 0.
(c) Inductively, prove that

e—]/x

) ) = § PO S x>0

0 ifx <0
where py is a polynomial function of degree k — 1 such that py (0) = 1.

Thus f is an example of a smooth function that is “infinitely flat” at x = 0, in the

sense that f(*)(x) = 0 for all k, but is not constantly equal to 0.

Using the infinitely flat function from exercise 1.4.30, we can actually construct

a smooth analog of the crazy oscillating sin(1/x)-type functions.

Exercise 1.4.32. Consider the function f : R — R defined by

e /*sin(1/x) ifx >0
f(x) =
0 if x <O0.

Show that f is smooth.

Bump functions
Next up, we have “bump functions.” We begin with the following definition.

Definition 1.4.33 (Support of a real-valued function). Suppose X is a metric
space® and f : X — R is a function. The support of f, denoted supp(f), is the

closure of the set of points where f is nonzero. In other words,

supp(f) ={x € X : f(x) # 0}.

A “bump function” is a smooth function with compact support.

®For the definition of support, X could more generally be a topological space.
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Example 1.4.34. Consider the function{ : R — R given by the following.

b e 1/0") jfx e (—1,1)
X =

0 otherwise.

See figure 1.4.35. It is clear from the definition of 1 that the support of \ is the
closed interval [—1, 1]. Moreover, observe that, if f is the “infinitely flat” function
from exercise 1.4.30 and p : R — Ris the polynomial p(x) =1 —x?2, then{ = fop.
Thus 1 is smooth.

Figure 1.4.35: The graph of the function 1 from example 1.4.34.

Exercise 1.4.36. For any a < b in R, construct a bump function f : R — R whose

support is [a, b].

Exercise 1.4.37. Let F be a closed subset of R. Construct a smooth function

f: R — R which is zero on F and nonzero outside of F.

Possible hint. Recall that the complement of F is a countable disjoint union of

open intervals (cf. [ , theorem 6.17]).
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Bridge functions

Next up, we'll discuss an example of a “bridge” function. It will be constant on
(—o0,—1], and also constant on [1, 00), but the values on these two intervals is
different; and on (—1, 1), the function “smoothly bridges the gap” between the
two values.

In discussing this example, we will invoke the fundamental theorem of calcu-
lus, even though we have not proved it (or even defined integrals, for that matter).
If you're unhappy with using things you haven’t proved, you can find rigorous
discussions of integration in many places (eg, [ , chapter 5], [ , chapter
6], etc). Alternatively, you might also be interested in [ , chapter 3, example
12], which gives an example of a “bridging function” that involves no integrals

(but does involve a double exponential).

Example 1.4.38. Let 1\ be the bump function from example 1.4.34, and then

consider

Then 4
() J B(1) dt = p(x)

by the fundamental theorem of calculus. Thus 1 is smooth, since n’ =  is
smooth. Note moreover that 1) is increasing, since 1" = > 0. Finally, it is clear
from the geometric interpretation of integrals as “area under the curve” thatn is
constantly equal to O for all x < —1 and that it is constantly equal to n(1) for all
x> 1.

Exercise 1.4.39. For a < b in R, let I = [a,b] and let U be an open subset
containing I. Prove that there exists a bump function f : R — R such that
f(x) =1forallx € Kand f(x) =0 forall x ¢ U.
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Possible hint. The characteristic function

1 ifxel
0 ifx¢l

x1(x) =

is close to having all of the properties we want, but it’s not smooth; it’s clearly

not even continuous. “Bridge” the discontinuities.
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2 Multivariable derivatives

In this chapter, we will study derivatives of functions S — R™ where S is a subset
of R™ and m and n are arbitrary positive integers. As it turns out, the most
important case is when n = 1. In other words, the “multi” in the name of this
chapter (as opposed to the “single” in the name of the previous chapter) is really
referring to the fact that we might have multiple inputs (ie, m > 1), rather than
to the fact that we might have multiple outputs (ie, n > 1). The single variable
case is actually quite important for the multivariable case; we’ll often use results
from chapter 1 to prove their multivariable counterparts.

We’ll begin by analyzing a particular example to build up some geometric
intuition in section 2.1, before proceeding with the abstract discussion of multi-

variable derivatives.

2.1 Introductory example

Recall that we started off our discussion of single variable derivatives starting
with a very geometric idea of tangent lines to graphs. For large values of m
(and n), graphs become hard to visualize and it is not so clear what “tangent”
should mean. But there is at least one multivariable situation where, by exerting
some strain on the three-dimensional visualization sectors of our brain, we can
geometrically formalize what “tangent” might mean. This is the m = 2,n =1
situation. The graph of such a function is a surface in R3, and its “tangent” at a
point should be a plane.

By analyzing a specific function f : R? — R, we can get some valuable insights
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into multivariable derivatives; the analysis will presage many of the concepts we
will discuss later in the chapter. Any function would do, but let’s focus on the
function f : R? — R defined by

f(X>U) = x? +y2
for our analysis.

Describing the graph of f

First off, let’s try to get a solid understanding of the graph of f. The graph I'is a
subset of R? x R = R defined by

M={xy,z):z=f(x,y)} ={(xy,2) : 2 = x* +y%}.

It’s a little hard to visualize in three dimensions immediately, so we will start by
looking at two-dimensional slices of I', until we’ve seen enough slices that we
have a sense of the three-dimensional geometry.

If we consider the “vertical” slice obtained by setting x = 0, we find a parabola
z = y?. Similarly, if we consider the slice obtained by setting x = 1, we obtain
the parabola z = 1+y?. Fixing x = 5, we obtain the parabola z = 25+y?. In fact,
we can see that no matter what value of x we fix, the resulting slice is always a
parabola, just translated up from the origin by differing amounts; see figure 2.1.1.

Slicing “vertically in the other direction” gives similar results. If we fixy =0,
we end up with the parabola z = x?, and if we fix y = 2, we end up with the
parabola z = x* + 4.

It’s also worth considering the “level sets,” ie, the “horizontal” slices of T’
obtained by fixing various values of z. When z = 0, there is just the single point
x =y = 0, ie, the origin. Fixing z = 1, the slice is given by 1 = X% + yz, which
is a circle of radius 1. Fixing z = 17, the slice is 17 = x? +y?, which is circle of

radius v/ 17. In fact, all of the level sets are circles, and these circles form a sort
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2.1 Introductory example

Figure 2.1.1: Here are three vertical slices of the graph of the function f(x,y) =
x2 —i—yz. From left to right, they are the x = 0,x = 1, and x = 2 slices,
respectively.

of “topographic map” style picture of the graph of f. See figure 2.1.2.
Stitching all of these two-dimensional slices together in our minds, we can see

that the graph of f is a “big parabolic bowl” inside R3. See figure 2.1.3.

Tangent plane at a = (2, 1)

Now that we understand what the graph of f looks like, let’s try to figure out
what the “tangent plane” T at a point a = (2, 1) will look like. Of course, it’s a
plane inside R3 that passes through the point (2,1,f(2,1)) = (2,1,5). To specify
which plane it actually is, we start by describing some lines that lie on this plane.

Consider the y = 1 slice of I', which is a vertical slice containing the point a.
We know that the graph of I" along this slice is the parabola z = x* + 1. So, slicing
the tangent plane T along y = 1 should yield the tangent line to this function of
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one variable, which we know how to compute from chapter 1. The slope of this

tangent line is

if(x, 1) =4,
dx x=2

This quantity is called a partial derivative of f at a, and will be denoted (9f/0x)(a).

Thus the tangent line is the line parametrized by

The vector (1,0,4) records the fact that the tangent line moves up 4 units in the
z-direction for every 1 unit that it moves in x-direction.

Similarly, we can consider the x = 2 slice, which is another vertical slice
containing a. We know that the graph I" along this slice is the parabola z =
4 +y?.The slope of the corresponding tangent line is

of _df(2,y)

~—(a)
ay dy y=1

Thus this tangent line is the line parametrized by

2 0
k= [1[ +k |1
5 2

Again, the vector (1,0, 2) records the fact that the tangent line moves up 4 units

in the z-direction for every 1 unit that it moves in y-direction. See figure 2.1.4.
These two tangent lines uniquely determine the entire tangent plane T (ie, T is

the plane containing these two lines). One description that falls out immediately

from the parametrizations of the tangent lines we found above is that T is the
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plane parametrized by

" 2 1 0 2 h
lk = [1] +h [0 +k[1]| =|T]| + k
5 4 2 5 4h + 2k

As we’ve seen, the important part of this expression is the bottom entry on the far
right, the 4h+2k. The function R? — R given by (h, k) + 4h+ 2k is what we will
call the differential or the total derivative of f, and denote by df,. Notice that df is
a linear map R? — R. Moreover, its graph is a plane passing through the origin
that is parallel to T. In other words, if we take the graph of df, and translate it
over to the point (2, 1,5), we obtain exactly the tangent plane T. Speaking more
loosely, df, records all of the “slopey information” about the tangent plane T.

Notice moreover that, if e, e, are the standard basis vectors of R? (cf. sec-
tion 0.4), then

dfaler) =4 = £ (a)
X
of
dfa(e2) =2 = ~(a)
Y
so the standard matrix representation [dfq] (cf. definition 0.5.14) of the linear
map dfg is
of of
ata = [+ 2] =|5ilal go@). 215

df, as an approximation

Consider the function  : R? — R defined by

(h,k) = f(a+ (h,k)) — f(a) — dfq(h, k).
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This is the multivariable analog of the single variable remainder function from
remark 1.1.11. Then

r(hk)=2+h)?+(1+k)?—5—4h—2k = h? + k.

Notice that r gets small rapidly as (h, k) — 0. More precisely, the claim is that

N S
(h,k)—0 [(h, k) ’

ie, that |[r(h, k)| = o(|(h, k)|) as (h, k) — 0.
In fact, for the claim, it doesn’t matter whether | —| denotes the euclidean norm

or the max norm (cf. section 0.4). If it’s the euclidean norm, we have

. r(h, k)| . h? + k? .
1 = 1 - = 1 Vh2 + k2 =0.
(h,llcr)&o I(h, k)I2 (h,ir)rio vVh2 + k2 (h,ir)n%o *

If instead it’s the max norm, observe that

PRl 2K 2(I(h, K)lee)?
o 10,11~ [, Kl

= 2|(h, koo

so taking the limit as (h,k) — 0 and applying the squeeze theorem yields the
same result.

Since 1 gets small rapidly, we can say that the function (h, k) — f(a)+dfq(h, k)
is a good approximation of the function (h, k) — f(a + (h, k)) for small vectors
(h, k). Said differently, letting x = a + (h, k), the function x — f(a) + df,(x —a)

is a good approximation of f near a.

Overview

In what follows, we will turn the above example on its head and define the
differential df, to be a linear function which yields a good approximation of f

near a point a, and then we will prove in theorem 2.3.36 that partial derivatives
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(ie, derivatives along various “slices”) can be used to compute the standard
matrix representation of the the differential. This might seem a bit “backwards”
given our analysis of the example above, but there is a good reason for doing
this; it turns out that there are some bizarre functions where partial derivatives
make sense, but tangent planes do not.

Much of the discussion below will involve arbitrary m and n, which is impos-
sible to visualize. However, the m = 2,n = 1 situation already captures most of
the complexity that arises in the multivariable setting. If you run into something
that you looks overly abstract because of the general m and n, try to understand
itwhenm=2,n=1.

We'll be using a lot of linear algebra in this chapter. The notation | — | will
denote either the euclidean or the max norm on R™, and you can choose to
interpret it to be whichever of the two norms you like better (in the calculation
we did above, the euclidean norm was a little easier; but, in general, I find the
max norm to be far more convenient). When it makes a difference which of the
two norms on R™ we have in mind, we’ll specify this explicitly. We'll also need
some facts about the operator norm as we go along; I encourage you to at least

skim through section 0.6.A before proceeding.

2.2 Definition of the derivative

Throughout, S will denote a subset of R™.

Definition 2.2.1 (Differentiability ata point). A functionf :S — R™ isdifferentiable

at an interior point a € S if there exists a linear map £ : R™ — R™ such that
[fla+h)—f(a) —£(h)] =o(|h]) ash — 0.

It turns out that there exists at most one linear map that has the above property.
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Lemma 2.2.2. Suppose f : S — R™ is differentiable at an interior point a € S. If L and
¢’ are both linear maps R™ — R™ such that

[f(a+h) —f(a) — £(h)] = o(|h|) and [f(a + h) — f(a) — ¢'(h)| = o(|h|) as h — 0,

then L = (.

Proof. Let @ =’ — (. Then ¢ is also a linear map R™ — R™. Moreover, observe

that
lo(h) = [¢'(h) — e(h)|

(fla+h)—f(a) —L(h)) — (fla+h) —f(a) — ¢'(h)]
[f(a +h) —f(a) —L(h)| +|f(a + h) — f(a) — ¢'(h)].

N

Sinceboth [f(a+h)—f(a)—£(h)|and |[f(a+h)—f(a)—L'(h)|are o(|h|), exercises 0.1.6
and 0.1.7 imply that[@(h)| = o(|h|) also. Thenlemma 0.6.5implies that ¢ = 0. [

Exercise 2.2.3. Look at the exercises from chapter 0 that are invoked in the proof
above (namely, exercises 0.1.6, 0.1.7 and 0.6.3) and do any of them that you

haven't already done.
Lemma 2.2.2 tells us that the following definition makes sense.

Definition 2.2.4. Suppose f : S — R™ is differentiable at an interior point a € S.
Then the differential or the total derivative of f at a, denoted dfg, is the unique

linear map R™ — R™ satisfying
[f(a +h) —f(a) — dfg(h)| = o(/h|) ash — 0.

Pedantic remark. Since we’re using | — | to refer indiscriminately to both the eu-
clidean and max norms, it might be worth pointing out that the above definition
is independent of which norm you have in mind. More precisely, for any linear
function £ : R™ — R™, it is true that [f(a + h) — f(a) — €(h)]2 = o(|h|2) if and
only if [f(a + h) — f(a) — £(h)|e = 0(|hls). You might try proving this if you're
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2.2 Definition of the derivative

interested; the key is exercise 0.3.11. The upshot is that the differential df, is
a “good” approximation for f(a 4+ h) — f(a), independently of whether we’re

measuring distances using the euclidean norm or the max norm.

This definition is fairly difficult to use in practice. Only a handful examples
can be computed directly from the definition. Here are some that I think are

instructive.

Example 2.2.5 (Derivative of multiplication). Let it : R? — Rbe the multiplication
map K(x,y) = xy. Let us show that

di(q,b)(hy k) =Dbh + ak
for all (a,b) € R? and (h, k) € R?. Let {(h, k) = bh + ak. Observe that
u((a,b) + (h,k)) — u(a,b) —£(h,k) = (a + h)(b + k) — ab — bh — ak = hk,

and it is true that [hk| = o(|(h, k)|). Roughly, this is because |hk| is “quadratic,”
which should be smaller than the “linearish” |(h, k).

To check that [hk| = o(|(h, k)|) formally, we have to choose either the euclidean
or the max norm. Let’s use the max norm; if you prefer the euclidean norm, I'll
leave the euclidean version of the following for you to check yourself. We have
Ihk| < |(h, k)%, by definition, so

hk|  _ I(h KI5

Kl S TRl ke

The right hand side tends to 0 as (h, k) — 0, so the squeeze theorem guarantees
that the left hand side tends to as well. In other words, we have shown that

In((a, ) 4 (h,k)) — ula, b) — €(h, k)| = [hk| = o(|(h, k)| ),

proving that { = du (4 p)-
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Exercise 2.2.6 (Derivative of division). Let U = {(x,y) € R? : y # 0} and let
A : U — R be the division map A(x,y) = x/y. Show that

bh — ak
dA(a)b)(h)k) — T
forall (a,b) € Uand (h, k) € R

Exercise 2.2.7 (“Linear maps are their own derivatives”). Suppose { : R™ — R™

is a linear map. Prove that d{, = { forall a € R™.

Exercise 2.2.8. Suppose v,w € R™ and f : R — R™ is given by f(t) = v + tw.
Calculate df, for any a € R. Whatis dfq(1)?

We will develop a bit more theory in order to compute more effectively. Mean-

while, we can prove the following directly from the definition.

Exercise 2.2.9. If f : S — R™ is differentiable at an interior point a € S, show that

f must be continuous at a.

Of course, the converse to exercise 2.2.9 is false. We’ve seen single variable

examples; here are some multivariable examples.

Example 2.2.10. Consider the euclidean norm function f : R?> — R, given by

f(x,y) =V x? +y2'

See figure 2.2.11. This is definitely continuous at the origin, but the “point” of
the cone at the origin suggests that this function is not differentiable at 0. Let’s
check this directly from the definition.

Suppose for a contradiction that f were differentiable at the origin. Then there
would exist a linear map £(h, k) = ah + bk such that [f(h, k) — f(0) — £(h, k)| =
o(|(h,k)]). Observe that

If(h, k) — f(0) — £(h, k)| = [V h? + kZ — ah — bk|.
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2.2 Definition of the derivative

Intuitively, notice that vhZ + k2 is “linearish,” and ah + bk is definitely linear; so
the difference should also be “linearish,” but the only way a “linearish” function
canbe o(|(h, k)|) is if it's zero. But v'h? + k2 is not actually linear, so there cannot
not exist a and b such that v'h2 + k2 = ah + bk. The conclusion of this intuitive
argument is that it should be impossible for lvh2 + k2 — ah —bk| to be o(|(h, k)|),
no matter what a and b are.

More formally, we want to find a contradiction to the assertion that

i WhZEkZ—ah —bk| _

0.
(h,k)—0 I(h, k)|

If we approach the origin along the line k = 0, this says that

. |[VhZ—ah|
0=lim —— = lim
h—0 [h h—0

hl ‘ . |h
——a] =

But this is nonsense, since |h|/h does not converge at all as h — 0. It tends to 1
ash —0"andto—lash — 0.

Exercise 2.2.12. Consider the function f : R — R given by

f(x,y) = v/Ixyl.

See figure 2.2.13. Show that f is continuous at the origin, but that it is not

differentiable at the origin.

Possible hint. 1f f were differentiable at the origin, then there would exist a,b € R

such that
o [f k) —ah—bk
(h,k)—0 I(h, k)| .

Think about what happens with this limit when you approach the origin along
the line k = 0, along the line h = 0, and along the line h = k.
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Exercise 2.2.14. Describe the set of all points (a,b) € R% where the function
f:R? — R given by
f(x,y) = Ixyl

is not differentiable.

2.3 Computing derivatives

2.3.A Sum and scalar multiples rule
Exercise 2.3.1 (Sum rule). Prove that, if f,g : S — R™ are both differentiable at
an interior point a € S, then f + g is also differentiable at a and

d(f+ g)a = dfa + dga-

Exercise 2.3.2 (Scalar multiples rule). Prove that, if c is a constantand f : S — R™

is differentiable at an interior point a € S, then cf is also differentiable at a and
d(cf)q =c - dfq.

2.3.B Chain rule

The proof of the following is essentially the same as the second proof of the single
variable chain rule given in section 1.2.C. Since this proof is basically a repeat,
some details are omitted; you are asked to fill in the details in exercise 2.3.5

below.

Theorem 2.3.3 (Chain rule). Suppose that S and T are subsets of R™ and R™, respec-
tively, that f : S — R™ is differentiable at an interior point a, that f(S) C T and f(a) is
an interior point of T, and that g : T — RP is differentiable at f(a). Then the composite
gof:S — RP is also differentiable at a, and

d(g o f)a = dgf(a) odfq.
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Proof. Define the “error in approximation” functions

r(h) = f(a+h) — f(a) — dfq(h)
s(k) = g(f(a) + k) — g(f(a)) — dgs(a) (k)

and then observe that

g(fla+h))—g(f(a))—dgs(a)(dfa(h)) = dgs(a)(r(h)) +s(dfa(h)+r(h)). (2.34)
This means that

lg(fla+h)) —g(f(a)) — dgs(q)(dfa(h))] < ldge(q)(r(R))] + [s(dfa(h) +r(h))].

Since dgy(q) islinear and [r(h)| = o(|h|), exercise 2.3.5 guarantees that|dg¢(q) (T(h))| =
o(|hl) also. Thus, by exercise 0.1.6, it is sufficient to prove that [s(dfq (h) +1(h))]
o(|h|). To do this, define n(k) = |s(k)|/|k| and then notice that

[s(dfa(h) 4 r(h))]
R

[dfa(h) + (R
h

<nmmuw+ﬂM)Qde+”$”)

=n(dfa(h) 4 7(h))

where we have used exercise 0.6.2 for the inequality. We now take the limit as
h — 0. Using the facts thatno (dfq + 1) is continuous at 0 and that [r(h)| = o(|h/),
we obtain the result. O

Exercise 2.3.5. (a) Prove equation (2.3.4).
(b) Do exercise 0.6.2 if you haven't already.

(c) Suppose r : R™ — R™ is a function such that [r(h)| = o(|h|) as h — 0. If
{: R™ — RP is linear, prove that [{(r(h))| = o(|h]) also.

Possible hint. Even though the operator norm does not appear anywhere in
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the statement of this exercise, you might find the concept useful (especially

exercise 0.6.2).

(d) Prove thatn o (dfq + 1) is continuous at 0.

2.3.C Differentiability by components

Recall that we asserted at the beginning of this chapter that the “multi” in the
name of this chapter refers to the number of inputs (rather than the number of
outputs). This section is where we show that understanding the n = 1 case is

“enough” to understand general n.

Definition 2.3.6 (Component functions). For any function f : S — R™, we define
the jth component function f; : S — R to be the composite 7; o f, where 7; is the

jth projection map (cf. section 0.4).

Proposition 2.3.7. A function f : S — R™ is differentiable at an interior point a € S if
and only if the component function f; : S — R is differentiable at a for all j = 1,...n.

Moreover,
df] ,a (h)

dfq(h) = : . (2.3.8)
dfn,a(h)
Proof. 1f fis differentiable at a, then the composite f; = 71j of is also differentiable

at a by the chain rule 2.3.3. Moreover, since 7 is linear, we know that dm; ¢(q) =

7t; by exercise 2.2.7. Thus, by the chain rule,
dfj a(h) = (d7,¢(q) © df o) (h) = 7t (dfa(h))

for all j, which is precisely equation (2.3.8). For the converse, we turn equa-

tion (2.3.8) on its head. Suppose fj is differentiable at a for all j, and let
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€:R™ — R™ be the linear map

We now want to show that |f(a + h) — f(a) — £(h)| = o(|h|) as h — 0. Observe
that the component functions of h — f(a 4+ h) — f(a) — £{(h) are given by

v = (fla+h) —f(a) —{(h)) = fj(a +h) — fj(a) — dfj o (h)

since 71 is linear, and we know that [fj(a + h) — fj(a) — dfj «(h)| = o(|h]). By
exercise 2.3.9 below applied with the function r(h) = f(a + h) — f(a) — £(h), we
conclude that [f(a + h) — f(a) — {(h)] = o([h]). O

Exercise 2.3.9. Show that if S is a neighborhood of 0 in R™ and r: S =+ R™ is a
function such that [rj(h)| = o(|h|) ash — Oforallj = 1,...,n, then r(h)| = o([h/)
also.

Possible hint. This is easy if you're using the max norm. If youre using the

euclidean norm, you may find it useful to do exercise 0.3.11 first.

Exercise 2.3.10. Suppose S is a subset of R and f : S — R™ is differentiable at an
interior point a. Show that the standard matrix representation [df ] of the linear
map dfq : R = R™n is given by

f1(a)
[dfa] - y
fnla)

where fj(a) is the derivative of the single variable function fj : S — R in the

sense of chapter 1.
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2.3.D Product and quotient rules

We showed in the previous section that it’s enough to understand the n = 1 case,
ie, the case of real-valued (rather than R™-valued) functions. So in this section
and the next, we’ll focus our attention on real-valued functions.

Note that we can combine real-valued functions in more ways than the ones
we’ve already discussed; specifically, we can multiply and divide them. As in
chapter 1, we have product and quotient rules to deal with this. As it turns out,

we can actually derive these using the multivariable chain rule 2.3.3!

Proposition 2.3.11 (Product rule). Suppose f,g:S — R are both differentiable at an
interior point a € S. Then fq is also differentiable at a and

d(fg)a = gla)dfq + f(a)dgq.
Proof. Let f x g denote the function S — R? defined by
(fx g)(x) = (f(x), g(x)).

Observe that the first and second component functions of f x g are f and g,

respectively; thus it follows from proposition 2.3.7 that
d(f x g)a(h) = (dfa(h),dga(h)).

Let u: R> — R denote the multiplication map p(x,y) = xy that we considered
in example 2.2.5. Then fg = p o (f x g), so by the chain rule 2.3.3, we have that

d(fg)a(h) = dit((a),g(a)) (A(f X g)a(h))
= dWf(a),g(a)(dfa(h), dga(h))
= g(a)dfa(h) +f(a)dga(h)a

where we have used the calculation from example 2.2.5 for the final step. O
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Exercise 2.3.12. Suppose f : S — R is differentiable at an interior point a € S and
that f(a) # 0. Show that 1/f is also differentiable at a, and

d(1/f)q = “Ha?
Possible hint. Consider the function t : R \ {0} — R given by t(x) = 1/x. This
is a single variable function, so we know di, from chapter 1. Now note that
1/f=1tof.

Exercise 2.3.13 (Quotient rule). Suppose f,g : S — R is differentiable at an
interior point a € S and that g(a) # 0. Show that f/g is also differentiable at a,
and that

g(a)dfy —f(a)dga
g(a)? '

Possible hint. One approach is to combine exercise 2.3.12 and the product rule

d(f/g)a =

2.3.11. An alternative approach is to mimic the proof of the product rule 2.3.11
(using the division function of exercise 2.2.6 in place of the multiplication func-

tion of example 2.2.5).

2.3.E Directional and partial derivatives

We now formalize the “slicing” we did in section 2.1.

Definition 2.3.14 (Directional derivatives). Suppose f : S — Risa function,a € S
is an interior point, and h € R™ is a vector. The directional derivative of f at a with

respect to h, denoted 01, f(a), is defined to be the limit

. fla+th)—f(a)
lim .
t—0 t

If h = e; is the ith standard basis vector (cf. section 0.4), then this is called the ith
partial derivative of f at a and denoted 9;f(a) (instead of ¢, f(a)). If we're using

xi to denote the ith component of the input of f, then 9;f(a) is sometimes also
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denoted by one of the following.

of
aXi

0
aXi

fxi(a) f(x) (a)

X=a xXxX=a axi

You may remember from multivariable calculus that partial derivatives behave
a great deal like single variable derivatives. The reason for this is the following
important remark, which reinterprets a directional derivative as a single variable

derivative.

Remark 2.3.15. For a € S an interior point and h € R™, consider the function
& : R — R™ given by &(t) = a + th. This is the “line through a in the direction
of the vector h.” Note that 0 = £~ '(a) is an interior point of £-1(S) since a is a
interior pointof S. If f : S — Ris a function, then fo £ is a single variable function
£71(S) = R, and we have

onf(a) = (fo £)'(0),

just by writing out the definition of both sides. A bit more geometrically, fo & can
be thought of as the restriction of f to the line passing through a in the direction
of h. This is a single variable function, and the derivative of this single variable

function at 0 is the directional derivative of f at a with respect to h.

Example 2.3.16. Consider the function f : R*> — R given by f(x,y) = sin(xy?).
Fix (a,b) € R? and define & : R — R? by &(t) = (a+t,b). In other words, & is the
line through (a, b) in the direction of the vector (1,0), as in remark 2.3.15. Then

(fo&)(t) =f(a+t,b) =sin((a+ t)b?).
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Then of
ai(a’b) = (fo E»)/(O)
X
_dg 2
=T (sin((a + t)b?)) o
— b cos((a + t)b?)],_,

= b? cos(ab?).
Exercise 2.3.17. With notation as in example 2.3.16, compute (9f/dy)(a, b).

Exercise 2.3.18. Suppose f : S — R is a function and a € S is an interior point.

Prove the following.
(a) 0of(a) =0.

(b) If 01,f(a) exists for some h € R™, then 0 nf(a) also exists for all A € R and

87\hf(a) = Aahf(a).

We can use remark 2.3.15 to prove some directional derivative analogs of

results we proved in chapter 1.

Exercise 2.3.19 (Product rule for directional derivatives). Suppose f,g : S — R
are functions, a € S is an interior point, and h € R™ is a vector such that 9, f(a)

and 0y g(a) both exist. Prove that 9y, (fg)(a) also exists and that

on(fg)(a) = g(a)on(f)(a) + f(a)ong(a).

Possible hint. Use remark 2.3.15 and the single variable product rule 1.2.4.

Exercise 2.3.20 (Quotient rule for directional derivatives). Suppose f,g:S — R
are functions, a € Sis an interior point such that g(a) # 0 and 0y, f(a) and 0ng(a)
both exist for some h € R™. Show that 01,(f/g)(a) also exists and

g(a)onf(a) — f(a)ong(a)

On(f/9)(a) = oL .
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Possible hint. Use remark 2.3.15 and the single variable quotient rule 1.2.7.

Exercise 2.3.21 (Interior extremum theorem for directional derivatives). Suppose
f:S — Ris a function and an interior point a € S is a local extremum of f. Show
that, if 01,f(a) exists for some h € R™, then 0,f(a) = 0.

Possible hint. Use remark 2.3.15 and the single variable interior extremum theo-
rem 1.2.21.

Just as the converse to the single variable interior extremum theorem 1.2.21 is
false (cf. exercise 1.2.22), so too is the converse to the interior extremum theorem
for directional derivatives 2.3.21, except that there are now even more ways for

the converse to fail. Here are some examples to illustrate this.

Example 2.3.22. Consider the function f : R> — R given by
f(x,y) = x? _yz'

Let &£(t) = 0+ te; = (t,0). Then f o & has a minimum at 0, so (f o §)/(0) =
(0f)/(0x)(0) = 0. Similarly, if £(t) = 0 + te; = (0, 1), then f o £ has a maximum
at0, so (fo &)/(0) = (9f)/(dy)(0) = 0 also. But clearly these two facts together
mean that 0 cannot be a local extremum of f. See figure 2.3.23. This kind of a

point is sometimes called a “saddle.”

Exercise 2.3.24. Consider the function f : R> — R given by

fx,y) = (y —x*)(y —3x?).
See figure 2.3.25 for the graph of f.

(a) Show that the origin is not a local extremum of f.

Possible hint. Consider the values of f on points of the form (0, b) and (a, 2a?)

near the origin. You might consider identifying where these points are on
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the graph depicted in figure 2.3.25 to get a more visual sense of what’s going

on.

(b) Show that f has a local minimum when restricted to an arbitrary line through
the origin. Conclude that 3j,f(a) = 0 for all h € R2.

Exercise 2.3.26. Consider the function f : R? — R given by
f(x,y) = 2x> — 3x% + 2y> + 3y°.

Find all points a € R? such that 91f(a) = 9,f(a) = 0. Of these points, which (if

any) are local extremums?

Now for the main result of this section, which relates the differential to di-
rectional derivatives. Note that we will generalize this result slightly in theo-
rem 2.3.36 below.

Proposition 2.3.27. If f : S — Risdifferentiable at an interior point a € Sandh € R™,
then
dfq(h) = onf(a).

Thus, the standard matrix representation [df 4] of the total derivative dfq : R™ — R is

a 1 x m matrix whose ith entry is the ith partial derivative 0:f(a).
[dfq] = |971f(a) 02f(a) --- Omf(a)

Proof. If h = 0, we know that 0of(a) = 0 by exercise 2.3.18 and that df,(0) =0
since df, is linear, so we are done. Thus we can assume that h is nonzero. Let r

be the “error in approximation” function

r(k) =fla+ k) —f(a) — dfq(k),
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so that [r(k)| = o([k|) as k — 0. Letting k = th, we see that

r(th) = f(a + th) — f(a) — dfq(th) = f(a + th) — f(a) — tdfa(h)

by linearity of df, so
T(th) _ fla+th) — f(a) — tdfg(h) _ fla+th) — f(a) dfa(h).
t t t
Then
fim |G FE Q) e ] 2 i TV g ML
t—0 t t—0 |t t—0 [th|

where we used the fact that [r(k)| = o(|k|) as k — O for the last step. This tells us
that 0y, f(a) exists and equals df4 (h). In particular, applying this with h = e;, we
see that dfq(ei) = 9if(a), which yields the standard matrix representation. ]

Remark 2.3.28. If f : S — Ris differentiable at an interior point a € S, the column

vector

[91f(a)
[dfq]" = azf_(a) eR™

Omf(a)

is often called the gradient of f at a, and is denoted Vf(a). If h € R™ is any vector,
then
[dfq(h)] = [dfalh = [df]" - h = Vf(a) - h,

where the - denotes the dot product.

Now for the important caveat: unfortunately, the converse to proposition 2.3.27
is not true: the existence of all partial derivatives is not sufficient to guarantee
differentiability. Even the existence of all directional derivatives is not sufficient

to guarantee differentiability. In fact, we cannot guarantee differentiability even
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if all directional derivatives exist and the function h — 0y, f(a) is linear.

Here are several examples to drive home these points. They’re useful exam-
ples to study closely; you'll gain valuable intuition about multivariable differen-
tiability and the somewhat subtle way in which it is related to single variable

differentiability.
Exercise 2.3.29. Consider the function f : R? — R defined as follows.

1 ifx=00ry=0
f(x,y) =
0 otherwise

(a) Sketch a graph of f by hand.
(b) Show that f is discontinuous (so it cannot be differentiable, by exercise 2.2.9).

(c) Show that both partial derivatives of f exist at the origin.

Exercise 2.3.30. Consider the function f : R?2 — R defined as follows.

Xy .
if (x,y) #0
f(x,y) = X2+U2

0 if (x,y) =0
See figure 2.3.31. Clearly f is continuous (and differentiable) away from the
origin.
(a) Show that f is discontinuous at the origin (so it cannot be differentiable, by

exercise 2.2.9).

(b) Show that both partial derivatives of f exist at the origin.

Exercise 2.3.32. Consider the function f : R2 — R given by

x3

—— if (x, 0
foy) = 4 2192 (xy) #
0 if (x,y) =0.
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See figure 2.3.33.
(a) Show that f is continuous.

(b) Show that 9, )f(0) exists for all nonzero (h,k) € R?, but that f is not

differentiable at the origin.

Possible hint. Calculate a formula for 9y ) f(0) for all (h,k) € R?, and show
that the function R? — R given by (h, k) > 0(p k)f(0) is not linear. Explain
why proposition 2.3.27 then implies that f is not differentiable at 0.

(c) Supposethaty:R — R? is differentiable at 0, that y(0) = 0, and that dyy # 0.
Show that f o y is differentiable at 0.

Exercise 2.3.34. Consider the function f : R2 — R given by

x| ify=x?
f(x,y) =
0 otherwise.

(a) Sketch a graph of f by hand.
(b) Show that f is continuous at the origin.

(c) Show that all directional derivatives of f at the origin exist and are equal to
0.

Possible hint. First show it for the partial derivatives, using remark 2.3.15.
Then fix v # 0 and show that d(; ,)f(0) = 0, again using remark 2.3.15. Then

use exercise 2.3.18 to conclude.
(d) Show that f is not differentiable at the origin.

Possible hint. Find a differentiable function y : R — RZ such that y(0) = 0
and f o y is not differentiable at the origin, and then use the chain rule 2.3.3

to conclude that f cannot be differentiable at the origin.
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Thankfully, the failure of partial derivatives to imply differentiability is rel-
atively pathological. Theorem 2.5.1 below proves that the partial derivatives

existing and being continuous is sufficient to guarantee differentiability.

2.3.F Jacobian matrix

Definition 2.3.35 (Jacobian matrix). Suppose f : S — R™ is differentiable at an
interior point a € S. The Jacobian matrix of f at a, denoted f’(a), is the n x m

matrix whose (j, i)-entry is 9;f;j(a). In other words,

[01f1(a) d2f1(@) - dmfila)
) 01f2(a) 0d2f2(a) -+ Omfa(a)
f'(a) = ) ) , )

_a1fn(a) 02fn(a) --- amfn(a)_

Note that propositions 2.3.7 and 2.3.27 tell us that all of these partial derivatives

exist.
Theorem 2.3.36. If f : S — R™ is differentiable at an interior point a € S, then
Onfi(a)
dfq(h) =
ahfn(a)
In particular, [df 4] = f'(a).
Exercise 2.3.37. Prove theorem 2.3.36.
Possible hint. Use propositions 2.3.7 and 2.3.27.

Using theorem 2.3.36, many of the rules for differentiation we’ve seen can be
rewritten in forms that you might be more familiar with from single variable
calculus. For example, since composition of linear maps corresponds to multi-

plication of the corresponding matrix representations, the chain rule 2.3.3 states
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that
(gof)'(a) =ld(gof)al = [dgs(a) © dfal = [dgs(a)l[dfa] = ¢'(f(a))f'(a).

Though the equality (g o f)'(a) = g’(f(a))f’(a) looks superficially identical to
the equality from the single variable chain rule 1.2.9, it’s worth noticing that the
terms in this multivariable version are matrices. In particular, this means that
that order of the multiplication g’(f(a))f’(a) cannot be interchanged (this was a
non-issue in the single variable case).

Similarly, the matrix version of the multivariable product rule 2.3.11 states that

(fg)'(a) = g(a)f'(a) + f(a)g’(a),

which again looks superficially identical to the single variable product rule 1.2.4,
but again, it is worth noting that g(a) and f(a) are scalars, whereas f'(a) and

g’(a) are matrices.

Unimportant remark. For a single variable function differentiable f, in chapter 1 we
saw that the differential df to be the linear map given by multiplication by the
derivative f’(a), and the derivative f’(a) was the standard matrix representation
[df4] of the differential df,. For multivariable differentiable functions f, the
differential df, is the linear map given by left multiplication by the Jacobian
matrix f’(a), and the Jacobian matrix f’(a) is the standard matrix representation
[dfq] of the differential df,. The term “derivative” is a little ambiguous for
multivariable functions; sometimes people will use it to refer to the differential

df,, and sometimes people will use it to refer to the Jacobian matrix f'(a).

2.3.G Rank of a differentiable map

Definition 2.3.38 (Rank of a differentiable map). Suppose f: S — R™ is differen-
tiable at an interior point a € S. The rank of the differential df, : R™ — R™ (o,
equivalently, the rank of the Jacobian matrix f’(a)) is also called the rank of f at a,
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denoted rank, (f). Note that we always have
rankq () < min{m,n}.

We then make the following definitions in various special cases.

o We say that f is immersive at a if ranky(f) = m (equivalently, if dfy is

injective).
o We say that f is submersive at a if rankq(f) = n (equivalently, if df, is

surjective).

e We say that f is étale at a if ranky(f) = m = n (equivalently, if df, is an

isomorphism).

e We say that a is a reqular point of f if rankq (f) = min{m, n}. Otherwise, we
say that a is a critical point of f.

We also say that a point b € R™ is a reqular value of f if every a € f~1(b) is a

regular point of f, and that it is a critical value otherwise.

There are lots of relationships between these notions, depending on how the
dimension of the domain, m, compares with the dimension of the codomain, n.
You should convince yourself of the following facts.

o Ifm>n..
- f cannot be immersive at any point.

- ais aregular point of f if and only if f is submersive at a.

o Ifm<mn..
- f cannot be submersive at any point.

- ais aregular point of f if and only if f is immersive at a.

e [fm=n..

129



2 Multivariable derivatives

— ais a regular point of f if and only if f is immersive at a, if and only

if f is submersive at q, if and only if f is étale at a.

Caution. Some mathematicians use a different definition of “regular point.” They
define a point to be regular if rank, (f) = 1, so that, by definition, it’s always true
(for all m, n regardless of how these two integers compare) that f is a submersion
at a if and only if a is a regular point of f. If m > n, there’s no difference
between these alternative definitions and our definitions. But, if m < n, there
is a difference: these other mathematicians would say that all points are critical
in this case, but that isn’t true for us with the definitions we’ve made above. So,
if you see the words “regular point” and “critical point” in another text and it’s
possible that m < n, it’s worth looking back to make sure you know what the

author means!

Unimportant remark. While we’re on the topic of terminology, it may be worth
mentioning that the word “étale” is not commonly used in real analysis or in
differential geometry; in fact, as far as I'm aware, there is no word in these fields
that means that the derivative is invertible. But the word “étale” is used in alge-
braic geometry to mean that the derivative is invertible, so I decided to import
this word from algebraic geometry. That said, if you do go on to study algebraic
geometry at some point, it’s worth noting the algebraic geometry words cor-
responding to “immersive” and “submersive” are “unramified” and “smooth,”
respectively. This usage of “smooth” in algebraic geometry is unrelated to the
real analysis and differential geometry usage of smooth that we’ll encounter later

on.

Example 2.3.39. Let f : R — R? be the map f(1,0) = (rcos0,rsin0). See
figure 2.3.40.
We compute partial derivatives.

ofy ofz . ofy ) ofy
ﬁ—cose ﬁ—smﬁ 3 — Tsin 0 30 =rcos0.
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Thus

F(r,0) = [cose —rsin@] '

sin® rcosb

Since this is a square matrix, df(, g has non-maximal rank if and only if its

determinant vanishes. But
detf'(r,8) = rcos? 0 + rsin? 0 =T,

so the critical locus (ie, the set of all critical points) of f is the vertical line r = 0,

and f is étale away from this line.
Exercise 2.3.41 (Fold). Let f : R> — R? be the function given by f(x,y) = (x,y?).

(a) Draw pictures of f (like the pictures in example 2.3.39 above) until you can

see why this function is called a “fold.”
(b) What is the critical locus of f?

Exercise 2.3.42 (Parametrization of a cusp). Consider the function f : R — R?
defined by
f(t) = (£2,13).

See figure 2.3.43 for a picture of the image of f. The “pointy” part at the origin
is sometimes called a cusp. Calculate f’(t) for all t € R. Show that 0 is a critical

point of f, and that f is immersive away from 0.

Exercise 2.3.44 (Parametrization of a node). Consider the function f : R — R?
defined by
f(t) = (2 = 1,83 —t).

See figure 2.3.45 for a picture of the image of f. The self-intersecting part at the
origin is called a node. Calculate f'(t) for all t € R, and show that f is immersive

everywhere.
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Exercise 2.3.46. Show that an interior point a € S is a critical point of f : S — R

if and only if 0;f(a) = O for all i.

Exercise 2.3.47. Let f : R3 — R be the function
fx,y,z) = x? —|—y2 +z?

Calculate f/(a) for all a € R3, and find all critical points of f. Also, describe the
level sets of f. In other words, for fixed r € R, describe the set of all a € R3 such
that f(a) = .

Exercise 2.3.48. Find the critical points of the function f : R> — R? given by

f(x,y,2) = (xy, z).
Exercise 2.3.49. Find the critical points of the function f : R3> — R? given by

f(x,y,z) = (X+y2)y +ZZ)-

2.4 Differentiable functions

We saw in exercise 2.2.14 that a function that is differentiable at a point need not be
differentiable at nearby points. Functions which are differentiable throughout an
open set have some nice properties, which we discuss in this section. Throughout

this section, U denotes an open subset of R™.

Definition 2.4.1. A function f : U — R™ is differentiable if it is differentiable at
every a € U. The differential or the total derivative of f, denoted df, is the function
U — L(R™,R™) given by a — df,, where L(R™, R™) denotes the set of all linear

maps R™ — R™.

Definition 2.4.2. If f : U — R and h € R™ is a vector such that 0, f(a) exists
for all a € U, then the directional derivative of f with respect to h is the function
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onf given by a — 0nf(a). When h = e; is one of the standard basis vectors,
this function is called the ith partial derivative of f and is denoted 0;f. If we're
using the variable x; to denote the ith component of the input of f, then 9;f is

sometimes also denoted by one of the following.

of

f
x aXi

i

2.4.A Convex subsets

Recall that, in the single variable situation of section 1.3, a key role was played
by functions defined on intervals. In the multivariable situation, a similar role
is played by functions defined on “convex” subsets. These are subsets S C R™
such that any two points in S can be joined by a straight line segment that never

leaves S.
Definition 2.4.3. If a,b € R™, the straight line path from a to b is the function
y(t) = (1 —t)a+ tb.

Observe that y(0) = aand y(1) = b.

Exercise 2.4.4. Show that, for any a,b € R™, the straight line path from a to b is
differentiable.

Definition 2.4.5. A subset S of R™ is said to be convex if, whenever a,b € S and
v is the straight line path from a to b, then y(t) € Sforall t € [0, 1].

Exercise 2.4.6. Determine whether or not
S={(xy) € R? :x > 0ory #0}

is a convex subset of R?. Justify your answer.
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Exercise 2.4.7. Let I be an interval. Suppose f : I — R is concave down and f > 0.
Show that
S={(xy) € R?:x € [and 0 <y < f(x)}

is a convex subset of RZ.

2.4.B Vanishing derivatives

Here is a multivariable generalization of proposition 1.3.8. We will use the single

variable version to prove this multivariable version.

Proposition 2.4.8. Suppose U is convex and f : U — R™ is a differentiable function.
Then df = 0 if and only if f is constant.

Proof. Taking w = 0 in exercise 2.2.8 shows that, if f is constant, then df =
0. For the converse, we can assume without loss of generality that n = 1 (cf.
exercise 2.4.9). We want to show that, for any a,b € U, we have f(a) = f(b). Let
v be the straight line path from a to b. Convexity of U tells us that y(t) € U for all
t € [0,1]. Also, v is differentiable by exercise 2.4.4. Thus f oy is a differentiable
function [0, 1] — R and

(foy)'(t) = (v(t)y'(t) =0

where we used the (matrix version of the) chain rule 2.3.3 at the second step, and
the fact that df = 0 for the final step. Thus it follows from proposition 1.3.8 that

f oy is constant, which means that

fla) = f(y(0)) = f(y(1)) = f(b). O

Exercise 2.4.9. Explain why proving that df = 0 implies that f is constant for

n = 1 implies the same fact for general n.

In fact, it’s not necessary that the domain be convex in order for the conclusion
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of proposition 2.4.8 to be true. Before getting to the general statement, here is a

useful intuition-building exercise.

Exercise 2.4.10. Let U denote R? minus the non-negative x-axis. In other words,
U=R>\{(x,0) € R?: x > 0}.

(a) Show that U is not convex.

(b) Suppose f: U — Ris a differentiable function such that df = 0. Show that f

is constant.
Possible hint. Any pair of points in U can be joined by two straight line paths...
Exercise 2.4.11. Let U be a connected! open subset of R™.

(a) Show that, for any a,b € U, there exists a finite sequence of points
a=ap,0ary...,ax =Db

such that the image of the straight line path between a; and ai 1 is entirely

contained in U for all i.

Possible hint. For a € U, consider the set S of all points a’ € U such that there
exists a finite sequence of points a = agp, ai,..., ax = a’ such that the image
of the straight line path connecting a; to ai4 1 is entirely contained in U for
all i. Show that S is open, and also that the complement of S is open. Since

U is connected and S is nonempty, it must be that the complement of S is
empty.

(b) If f : U — R™ is differentiable, show that df = 0 if and only if f is constant.

Recall that a metric space X is connected if it cannot be written as the union of two disjoint open
subsets.
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2.4.C Bounded derivatives

Here is a multivariable version of exercise 1.3.9. Again, we will actually use the

single variable version to prove the multivariable version.

Proposition 2.4.12. Suppose U is convex and f : U — R™ is a differentiable function.
Suppose further that there exists a constant M such that ||dfx|| < M forall x € U. Then

If(b) — fla)l < M[b —

forall a,b € U.

Proof. Suppose first thatn = 1. If a = b, there is nothing to do, so we can assume

that a # b. Let
b—a

h= — —
b—al’

ie, his the vector pointing from a towards b normalized to unit length. Consider
the function &(t) = a + th as in remark 2.3.15. Then

(fo&)(t) =dnfla+th) = dfaren(h)
by theorem 2.3.36, which means that
|(fo &)/ (1)l = [dfaritn (W] < [|dfasenf[h] < MIh| =M,

where we used the fact that h has unit length for the final step. Notice that
£(0) = aand &(|b — al) = b, so by applying exercise 1.3.9 to f o &, we see that

[f(b) — f(a)l < M[[b —a|] — 0 = M|b — al.

This proves the statement for n = 1.
We'll prove the statement for general n only for the max norm and the max

operator norm. The proof for the euclidean norm is trickier: see [ , theorem
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9.19]. Note that dfj o = mj 0 dfq and ||7j||oc = 1 50
1d,alle0 < [I7[lcolldfallcc <M

by exercise 0.6.8. Applying proposition 2.4.12 to the component functions f;, we
find that
If;(b) —fj(a)l < M[b —d

for all a,b € Band all j = 1,...,n. Taking the maximum over all j proves the
result. O

Exercise 2.4.13. (a) The statement of the proposition 2.4.12 requires that the

domain of f is convex. Where in the proof is this used?
(b) Prove that |72 = ||7j[lec = 1.

(c) If you haven't already done it, do exercise 0.6.8.

2.4.D Inverse function theorem

The inverse function theorem is an extremely important foundational result. It
comes up frequently in real analysis and differential geometry, and has inspired

significant developments in algebraic geometry and number theory.

Definition 2.4.14. A differentiable function f : U — R™ is étale if it is étale at
every a € U (ie, if df is an isomorphism for every a € U).

Theorem 2.4.15 (Inverse function theorem). Suppose f : U — R™ is étale. Then f is
open. Moreover, for every a € U, there exists an open neighborhood V of a such that f|y

is injective, the inverse function (fl\/) ™! is differentiable, and

dA((flv) ™y = (df (g 1(y) "

forally € (V).
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The proof will require an extremely lengthy discussion. For the time being, let
us content ourselves with thinking about the statement of the theorem.

First off, let us compare the statement against the single variable version of
theorem 1.3.36. If Iisan openintervalin R, then f : I — Ris étale if and only if itis
differentiable and f’(x) never vanishes, so the hypotheses of the theorem above
and the single variable version match up exactly. The multivariable version
above asserts that f must be open and “locally injective.” On the other hand,
the single variable version asserts that f is strictly monotone; and we’ve seen
that strict monotonicity implies that f is open and injective (cf. exercises 1.3.15
and 1.3.16). The assertion on the differentiability of the inverse and the formula
for the derivative of the inverse match up exactly.

Thus, the single variable version is a stronger statement (when it applies)
because it guarantees full injectivity everywhere on the domain, whereas the
multivariable version above only guarantees “local injectivity” near every point
of the domain. This is the only difference between the two statements, and here
is an example to show that we cannot expect full injectivity in the multivariable

setting.

Exercise 2.4.16. Consider the function f : R? — R? given by
f(x,y) = (e* cosy, e* siny).

(a) Compute df and verify that f is étale.

(b) Show that f is not injective. In fact, for any point (a,b) in the range, show

that there exist infinitely many points in the domain which map to (a, b).
(c) Find an open neighborhood V of the origin such that f|y is injective.

Another important observation about the statement is the following. The
inverse function theorem asserts that being étale is sufficient to guarantee the

existence of (local) inverses. It is not a necessary condition for the existence of
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inverses, but it is a necessary condition for the existence of differentiable inverses,

as shown by the following exercise.

Exercise 2.4.17. (a) Give an example of a differentiable and injective function
f : R = R which is not étale. What is the inverse of your function f? Is the

inverse differentiable?

(b) Suppose U is an open subset of R™ such that f : U — R™ is differentiable and
injective and that f(Ul) is open. Show that, if f=! : f(U) — R™ is differentiable,

then f is étale.

The importance of the inverse function theorem derives from the fact that it
lets us use linear algebra (which is easy) to make assertions about solutions of
nonlinear equations (which are very difficult, in general). Here is an example to

illustrate this point.

Example 2.4.18. Consider the following nonlinear system of equations.

x+x2y:a

y—xy?+3x*=b

When a = b = 0, this system has a solution given by x =y = 0. That much is
clear. What if a and b are not both zero? Does this system have any solutions?
Are the solutions unique at all? None of this is very obvious on the face of it. I
at least do not see any clear way to solve for x and y in terms of a and b.

Let f : R — R? be the function given by f(x,y) = (x + x?y,y — xy? + 3x?).

Then
1+ 2xy x?

det f'(x,y) = det 5

] =1—6x> —3x%y?.

6x—y- 1—2xy

This is a continuous function of (x,y) and it is nonzero when (x,y) = 0, so there
exists an open neighborhood U of 0 such that det f'(x,y) # 0 for all (x,y) € U.
In other words, f|y is étale. By the inverse function theorem 2.4.15, we can
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replace U with a smaller open neighborhood of 0 in order to guarantee that fly
is injective and open. Then f(U) is an open neighborhood of f(0) = 0, and for
every (a,b) € f(U), there exists a unique (x,y) € R? such that f(x,y) = (a,b).
We have just proved that, for every (a,b) in f(U), the system has a unique
solution given by (x,y) € U. In other words, if we perturb a and b just a little
bit away from 0, our system will have a unique solution close to 0. Thanks to
the inverse function theorem 2.4.15, proving this boiled down to a simple linear

algebra calculation!

Here are some more exercises and examples that may help clarify the statement

of the inverse function theorem.

Exercise 2.4.19. Recall the function f(x) = x + 2x? sin(1/x) that we saw in exer-
cise 1.3.20. As we've seen, f'(0) = 1 but f is not monotone (hence not injective,
by exercise 1.3.15) on any open neighborhood of 0. Explain why this does not
violate the inverse function theorem. In other words, show that f is not étale on

any open neighborhood of 0.
Exercise 2.4.20. Let U = {(x,y) € R? : x > 0} and let f : U — R? be the function
f(x,y) = (xe™¥,xeY).

(a) Show that f is étale.
(b) Show that f is injective. What is f(U)?

(c) Calculate (f~1)(1,1).

2.4.E Proof of the inverse function theorem x

This section is devoted to the proof of the inverse function theorem 2.4.15. It’s a

long and arduous proof.
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Differentiability of the local inverse

As it turns out, once a local inverse has been constructed, proving that it is
differentiable is not terribly difficult. The proof of this part is similar in spirit to

the single variable version (cf. the proof of theorem 1.3.36).

Proposition 2.4.21. Suppose f : U — R™ is differentiable, open, and injective. Then
=1 is differentiable and
d(f 1)y = (df g1y

forally € f(U).

Proof. Fixx € Uand y = f(x). Let
s(k) = '(y+k)—f (k) —df (k).

We want to show that |s(k)| = o([k|) as k — 0. In fact, since dfy is an invertible
linear map, it is sufficient to show that [dfy (s(k))| = o(|k|) (cf. exercise 2.3.5 part
()
Define
h(k) ="y +k) —f ' (y).

Since f is injective, we see that h(k) = 0 if and only if k = 0. Moreover, £
is continuous since f is open, which implies that h is also continuous. Now by

rewriting s in terms of h, we have the following.
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In other words, if we consider the “error in approximation” function
r(h) = f(x + h) — f(x) — dfx(h),

then

for all k. This means that, for all k # 0, we have

dfx(s(k))] _ [r(h(k)] _ [r(h(k))] [h(K]]
K| K| ()l [

where we have used the fact that h(k) # 0 since k # 0. Now, since |r(h)| = o(|h/)
as h — 0 and since the function h is continuous at k = 0, we have that
i)
k—0 |h(k)]| )
Thus it is sufficient to show that there exists a constant M such that [h(k)| < M[K]
for all sufficiently small values of k.
Since |r(h)] = o(Jh|) as h — 0, there exists 6 > 0 such that |r(h)| < |h| for all
[h| < 6. Then we have

[hl = [r(R)] = [f(x + h) — f(x) — dfx(h)]|
2 |dfx(h)[—[f(x +h) — f(a)|
Ih]

> W — [f(x +h) —f(x)|

where we have used exercise 0.6.7 for the final step. After rearranging, this

becomes

-1
Ih < <|W]_]|| - 1) [f(x +h) — f(x]|.
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Set

1 —1
()
[afx’ |

Now if h = h(k), we have f(x + h(k)) — f(x) = k, so the last inequality displayed
above reads
[h(k)] < MIf(x + h(k)) — f(x)| = M[Kk|. O

Reductions

For the remainder of this proof, f : U — R™ will denote an étale map. In
particular, this means that m = n, ie, that U is an open subset of R™. We'll
closely follow Terry Tao’s exposition of Saint Raymond’s proof [ I

Let’s begin by making a couple of helpful definitions.
Definition 2.4.22. For any point a € U, we make the following definitions.

e We say that f is locally injective at a if there exists an open neighborhood V

of a such that fl|y is injective.

e We say that f is locally surjective at a if f(a) is an interior point of f(V) for

every open neighborhood V of a.

Exercise 2.4.23. Show that f is open if and only if f is locally surjective at every
ael

In other words, to prove the inverse function theorem, we want to show that
f is locally injective and locally surjective at every point a € U. We can replace
f with the function x — f(x + a) in order to assume that a = 0. Then, we can
replace f with the function x — f(x) — f(0) in order to assume that f(0) = 0.
Finally, since dfj is invertible, we can replace f with dfal o f in order to assume
that dfy = id.

Exercise 2.4.24. Check that you understand the “we can assume”s in the previous

paragraph. More precisely, suppose a € U, { : R — R™ is a linear map, o € R™,
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and o : R™ — R™ is the function

Prove the following facts.
(a) Show that « is bijective, and calculate doc and doc™'.

(b) Letf=oof.
e Show that f is étale if and only if f is étale.

e Show that f is locally injective at a if and only if f is locally injective at

a.
e Show that f is locally surjective at a if and only if f is locally surjective
at a.
(c) Let f: o 1(U) — R™ be the composite f = f o .
e Show that f is étale if and only if f is étale.

e Show that f is locally injective at a if and only if f is locally injective at

o« (a).

e Show that f is locally surjective at a if and only if f is locally surjective

ato'(a).

(d) Figure outwhat{and o are for each of the “we can assume”s of the previous

paragraph.

In other words, we want to show that, if f is an étale map such that f(0) = 0 and
dfp = id, then f is locally injective and locally surjective at 0. Local surjectivity

is easier; local injectivity is very, very difficult.
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Local surjectivity

Since f(0) = 0 and dfy = id, we have |[f(h) —h| = o(|h|) as h — 0 by the definition

of the derivative, so there exists 6 > 0 such that
[f(h) —h| < |h]/2 (2.4.25)

for all [h| < 8. Replacing f with the function x — f(x/8), we can assume without
loss of generality that & = 1 (cf. exercise 2.4.24). We now claim that for all
0 <r<1,wehave

B(0,1/3) C f(B(0,7)). (2.4.26)

Suppose b € B(0,1/3). Let v : R™ — R be the differentiable function given by
v(x) = X% + ---x2 and then consider the function o : B(0,1) — R given by

Since B(0,1) is compact, this function must attain its minimum at a point
a € B(0,r). We will show that a € B(0,7) and that f(a) = b, thus proving
equation (2.4.26).

First of all, we must have a € B(0,r). Suppose for a contradiction that [a| = .
Then by equation (2.4.25) we would have

v/2 2 [f(a) —a = |a] = [f(a)] = r —[f(a)| > 2r/3,

where we've used the reverse triangle inequality for the second step. This is
evidently contradiction, since /2 < 2r/3. In other words, we have proved that
a is an interior point of the domain of o.

Now we prove that f(a) = b. The chain rule 2.3.3 tells us that

dO'a = dvf(a)fb o dfa.
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Since the interior point a is the absolute minimum of o, the interior extremum
theorem 2.3.21 and theorem 2.3.36 tells us that do, = 0, which means that
dfq(R™) C ker(dv¢(q)—p). Since df is invertible, this means that dv¢(q)_p = 0.
But we have

V’(X): 2X1 2X2 2Xn1|

50 dV¢(q)—p = Oifand onlyif f(a)—b = 0. We have now proved equation (2.4.26).
Notice that equation (2.4.26) implies that f is locally surjective at 0. Indeed, any
open neighborhood V of 0 contains an open ball of the form B(0,r) for0 < r < 1,
and then
f(V) 2 f(B(0,)) 2 B(0,7/3),

so f(0) = 0 is an interior point of f(V).

Local injectivity under assumptions

Proving local injectivity in general is very challenging, but is a bit easier if we
add some hypotheses to the statement of the theorem. In this section, we look at

some of these arguments under additional assumptions.

Assuming n = 1. As we’ve already noted, we’ve already proved not just local
injectivity but full injectivity when n = 1 in theorem 1.3.36. In any case, it’s
worth isolating the argument of injectivity and inspecting it closely.

Suppose we have a; < a; such that f(a;) = f(az). We'll prove that this
leads to a contradiction using two different but very similar arguments. The first
argument is very quick. The mean value theorem guarantees that there exists
between a; and a; such that f'(&) = 0, which contradicts our assumption that f
is étale.

The second argument avoids using the mean value theorem basically by prov-

ing the mean value theorem for this particular situation. The idea is to set
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b :=f(a;) = f(az2) and consider the function

Since o is a continuous function on the compact interval [a7, a;], the extreme
value theorem guarantees that it attains its maximum at some point & € [ay, az].
Observe that o(a1) = o(az) =0and o > 0, so if 6(&) = 0, then o = 0 constantly,
so f is constantly equal to b, which means the derivative vanishes on (aj, az) by
proposition 2.4.8, contradicting our assumption that f is étale. Thus o(&) must
be an interior point of the interval (a7, az) and o(&) # 0, ie, f(§) # b. Then the

interior extremum theorem 1.2.21 plus the chain rule tells us that

Since f(&) # b, this says that f'(&) = 0, which again contradicts our assumption
that f is étale.

This second argument is useful because the proof in the general setting involves
maximizing a multivariable function that’s very similar to the single variable
function o above. But before we get to the general proof, here is another proof

under additional hypotheses.

Assuming continuous differentiability. We haven’t formally defined it yet, but f
is said to be “continuously differentiable” if all of the partial derivatives of the
component functions 9;f; are continuous (cf. definition 2.5.5). The proof that
f is locally injective at O is a little easier if we assume that f is continuously
differentiable, but still a little tricky. The proof here is essentially the one from
[ , chapter 2].

Since dfy = id, we know that 9;f;(0) = 04 ;. Since 9;fj is continuous at 0, there
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exists & > 0 such that

1

0£5(0) — difj(x)| = 181,; — 9:f; (x)| < 5

Let V = B(0, 5). We will show that f|y is injective.
Let g(x) = x — f(x). It turns out that it is sufficient to prove that ||dgy|| < 1/2
for all x € V. Indeed, if we can prove this, then proposition 2.4.12 would tell us

that ]
lg(x1) —g(x2)| < §|X1 —x2|

for all x1,x> € V. But

lg(x1) — g(x2)| = [(x1 — f(x1)) — (x2 — f(x2)) = Ix1 — %2 = [f(x7) — f(x2)

by the reverse triangle inequality. This leads to the following.

:
Ix1 —x2f = [f(x1) — f(x2)] < Z|X1 —x2|

1
§|X1 —x2| <If(x1) —f(x2)]
Ix1 —x2| < 2[f(x1) — f(x2)]
This shows that f(x7) = f(x2) if and only if X1 = %2, or, in other words, that f|y/
is injective.
We'll prove that ||dfx| < 1/2 only for the max norm (and, correspondingly,

the max operator norm). Observe that 9;g;(x) = 0; ; — 9;fj(x), so we have

/
- gi(x)] < —
19" (%) oo rrilf}XIalg;(X)l <3

for all x € V. Using exercise 0.6.13, we see that ||dgx|lco < 1/2forall x € V.

Unimportant remark. It is also true that ||dgx||2 < 1/2. To prove this, we would
use the fact that ||¢||; < \/mn|A|, when A is the standard matrix representation
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of a linear map £ : R™ — R™ (cf. [ , section 2.3.2]), instead of exercise 0.6.13.
In any case, we didn’t prove proposition 2.4.12 for the eucldiean norm situation,

so perhaps its better to stick with the max norm here anyway.

Local injectivity

Incomplete. I'll write this up eventually. The continuously differentiable case
we proved above is really sufficient almost all of the time (and is all we’ll use as
we go forward), but if you're really curious about the general case, look at Terry

Tao’s blog post.

2.5 C* hierarchy

Throughout this section, U denotes an open subset of R™.

2.5.A Continuous differentiability
Continuity of partials

The following theorem is the promised sort-of-converse to proposition 2.3.27.
Recall from exercise 2.3.30 above that the partial derivatives all existing every-
where is not sufficient to guarantee differentiability. But, insisting that the partial
derivatives all exist and are continuous turns out to be enough to guarantee differ-

entiability of f. The proof is harder than you might expect.

Theorem 2.5.1. Suppose f : U — R is a function such that the ith partial derivative
0if : U — Rexists foralli=1,...m. If a € Wis a point such that 9:f is continuous
at a for all i, then f is differentiable at a.

Proof. If f is to be differentiable at a, we know from theorem 2.3.36 what dfq
needs to be in terms of the partial derivatives; so let’s turn this on its head by
writing down the linear map defined by the partial derivatives, and then proving

that that linear map is in fact df.

149


https://terrytao.wordpress.com/2011/09/12/the-inverse-function-theorem-for-everywhere-differentiable-maps/#more-5298
https://terrytao.wordpress.com/2011/09/12/the-inverse-function-theorem-for-everywhere-differentiable-maps/#more-5298

2 Multivariable derivatives

More precisely, we mean the following. Let { be the linear map R™ — R such
that

[e] = [aﬁ(a) amf(a)] .

In other words, £ : R™ — R s the linear map given by
l(hy,...,hm) =h101f(a) + -+ hnomf(a).
We will show that
If(a +h)—f(a) —L(h)] = o(|h]) ash — 0,

which implies that f is differentiable at a and that df, = {. In other words, we
will show that, for any € > 0, there exists a & > 0 such that, for all h € R™ with
[h| < 6, we have

[f(a +h) — f(a) — £(h)| < |hle. (2.5.2)

Let 8o > 0 be small enough that B(a, 8p) C U. We will soon make it smaller to
get inequality (2.5.2) to hold, but for the moment it is sufficient that B(a, 5o) € U.
Suppose h = (hy,...,hyn) € R™ with [h|] < 8p. Then consider the following

vectors in R™.

ap = a
a; =a+ (hy,0,0...,0,0)
az :a‘i‘(hth)O)---)O)O)

Am—1 :a+(h],h2,h3,...,hm,],0)
am :a+(h1)h2ah3)"')hm71’hm) =a+h

The vectors ao,...,am define a sort of “zigzag path” from a to a + h. See

figure 2.5.3. Clearly a; € B(a,d¢) foralli=1,...,m.
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Notice that

m

D (flas) = flai1)).

i=1

fla+h) —f(h)
Let us fix i temporarily. Notice that a; = a;—1 + hiei, so
flai) —f(ai—1) = flai_1 +hiei) — flai1).

Suppose hy # 0. We can then apply the mean value theorem 1.3.3 to the single
variable function

t— flag_q1 + tey)

on the closed interval between 0 and h;. This function is well-defined and
differentiable on this interval: its derivative at a value t is 9;f(a;_1 + te;), by
definition of partial derivatives. The mean value theorem 1.3.3 says that there
exists &; between 0 and h; such that

flai1 +hiey) —flai—1)  flai) —flai—1)

0if(ai_1 + &iei) = e = . ,

or, in other words,
flay) —flai—1) = &0if(ai_1 + &ieq).

If hi =0, we set & = 0 as well. See figure 2.5.3 again. Unfixing i, we find that

m

fla+h)—fla) =) (fla;) —flai—1)) = ) &dif(ai1 + &ey).

i=1 i=1

Thus

m

| (a+h)_f Z|E’l al 1—{—5,161)—611:(61)‘.

i=1

Since 0;f is continuous at a, there exists 6; > O such that|[0;(a+k)—0;(a)| < ¢/m
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for all k| < 6;. Let 8 = min{d¢, 61,...,0m}. If |h| < §, then
10i(ai—1 + &iei) — 0if(a)l < e/m,

which means that

Ele _ € §% e < e
- 1l X )
m mi:1

[fla+h) —fla) =L)< )_

m
i=1

where we use the fact that [&;| < |hy for all i for the final step. O

Unimportant remark. 1f you're using the euclidean norm, you’ll have to apply
exercise 0.3.11 for the final step of the proof above. This is another example of

why the max norm is often easier to deal with.

Here is another fact that can be proved using a similar argument involving

zigzag paths where each segment is orthogonal to the coordinate axes.

Exercise 2.5.4. Suppose U is a convex open subset of R™ and f : R™ — Ris a
(not necessarily differentiable) function for which there exists a constant M > 0
such that |0;f(x)| < M foralli=1,...,mand x € U. Prove that f is continuous.

Continuous differentiability

Definition 2.5.5 (Continuously differentiable functions). We say that f is con-

tinuously differentiable if 0;f; : U — R is continuous for all i = 1,...,m and
j = 1,...,n. Theorem 2.5.1 guarantees that such a function is, in particular,
differentiable.

As we saw in the single variable case, continuously differentiable functions
have lots of nice properties. For example, recall the calculation we did in exam-
ple 2.3.39 showing that the critical locus was a line inside R?, which is a closed

subset. This fact is a special case of the following.
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Exercise 2.5.6. Suppose f : U — R™ is continuously differentiable. Show that the
“critical locus” of f (ie, the set of all critical points of f) is a closed subset of U.

Here is a multivariable version of the differentiable-but-not-continuously-

differentiable function from exercise 1.2.25.

Exercise 2.5.7. Let f : R — R denote the following function.

x?sin(1/x) +y?sin(1/y) ifx,y #0

x? sin(1/x) ifx#0andy =0
f(X»y) =

y2sin(1/y) ifx=0andy #0

0 ifx=y=0

Show that f is differentiable, but not continuously differentiable.

Exercise 2.5.8. You might recall proving at some point in a previous class that
R? and R have the same cardinality: in other words, that there exists a bijection

f: R? — R. Show that any such bijection cannot be continuously differentiable.

Possible hint. Suppose for a contradiction that f : R?> — R is a continuously
differentiable bijection. Let U be an open subset of R? such that 3;f(x,y) # 0
for all (x,y) € U, and then consider the function g : U — R? given by g(x,y) =

(f(x,9),y).

Proposition 2.5.9. Suppose f : U — R™ is continuously differentiable, open, and

injective. Then £~ is also continuously differentiable.

Proof. We know from proposition 2.4.21 that f~! is differentiable and that

d(f 1)y = (df 1y
for all y € U. Taking standard matrix representations, we get

[d(f)y) = [(dfpr(y)) T = [df )]
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By theorem 2.3.36, the (j,1)-entry on the left hand side is 9y (fT )j(y), so this
equality says that 9;(f~'); : f(Ul) — R is equal to the following composite.

x> [dfy]

f(U) fil u GLn A!—)Ail GLn (j,i)—entry

R

Here GL,, denotes the set of invertible n x n matrices as in section 0.5.B. Each of
the functions being composed here is continuous (cf. exercise2.2.9 and lemma 0.5.18),

so we conclude that 9;(f~! ); is continuous. O

Continuous differentiability and continuity of the derivative x

For this section, we will need to make substantial use of the continuity properties
of the operator norm. But it’s also not terribly important. The main result of this
section, proposition 2.5.12, is aesthetically rather satisfying, and can occasionally

streamline proofs.

Lemma 2.5.10. Suppose f : U — R™ is differentiable. Then df : U — L(R™,R™) is
continuous if and only if df; : U — L(R™, R) is continuous forall j = 1,...,n.

Proof. We will use proposition 2.3.7, which tells us that f is differentiable if and
only if fj is differentiable for all j = 1,...,n, and moreover that df; , = 7tj o df,

for all a € U. In other words, the following diagram commutes.

u -4 g(rR™,RY)
\ [re-
(R™, R)

You will verify in exercise 2.5.11 below that the map “postcompose with 7t;” map
70— : L(R™,R™) — L(R™, R) is continuous. Thus, if df is continuous, then dfj
is also continuous.

Conversely, suppose that dfj is continuous for all j. Let us show that df is

continuous at any a € U. Suppose € > 0. Since dfj is continuous at a, there
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exists 8; > 0 such that
€

vn
forall x € Usuchthat|[x—al < §;. Letd := min{d1,...,0n}. Then ||df —dfq| < e

for all x € U such that [x — a| < 9, as you will verify in exercise 2.5.11 below. [J

”df)')x — df)')aH <

Exercise 2.5.11. (a) Check that the “postcompose with 7;” map £(R™,R™) —
L(R™,R) (ie, the one given by ¢ — 7 o @) is continuous. Alternatively,
prove the more general statement given in exercise 0.6.12 and then derive

this statement.

(b) Withnotation as in the latter part of the proof above, verify that ||df q —dfy || <

€.

Proposition 2.5.12. Suppose f : U — R™ is differentiable. Then f is continuously
differentiable if and only if df : U — L(R™, R™) is continuous.

Proof. Thanks to lemma 2.5.10, we can assume without loss of generality that
n = 1. If f is differentiable, then proposition 2.3.27 tells us that 0;f = df(e;). In

other words, the following diagram commutes.

u -4 L(R™,R)

\) l ‘evaluate at e;”

The “evaluate at e;” map is continuous by exercise 0.6.11. So, if df is continuous,
then 0;f must also be continuous, as it is the composite of two continuous

functions. The converse is left as an exercise; see exercise 2.5.13 below. O

Exercise 2.5.13. (a) Elaborate on the first sentence of the above proof (in other
words, explain why proving theorem 2.5.1 for n = 1 is sufficient to prove it

for all n).

(b) If you haven’t already done it, do exercise 0.6.11.
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(c) Complete the proof above by showing that df : U — £(R™, R) is continuous
if f is continuously differentiable.

Remark 2.5.14. This reformulation of continuous differentiability is often con-
venient in proofs. For example, in the proof of proposition 2.5.9, we calculated
that

d(f 1)y = (df 1y

This says that the d(f~") = inversion o df o f~'.

-1
fu) L) GLRm)

1 l Tinversion

u—4 5 GL(RM)

We know that f~! is continuous; df is continuous by proposition 2.5.12, and
inversion is continuous by exercise 0.6.15. Thus d(f~') is continuous, so propo-

sition 2.5.12 implies that ! is continuously differentiable.

2.5.B Ck functions

Definition 2.5.15 (C* functions). We say that a function f : U — R™ is CO if it is
continuous. Then, inductively, for any positive integer k, we say that a function
f: U — R™is Ck if the partial derivatives 9;f; all exist and are C*~ functions
u—R

By definition, f : U — R™ is C! if and only if it is continuously differentiable.
It is clear from the definitions that a function f : U — R™ is C¥ if and only if its
component functions fj : U — R are C*. Here are some results showing that

reasonable ways of combining C* functions still yield C* functions.

Exercise 2.5.16. Show that the set of all C* functions U — R™ form a vector

space.
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Exercise 2.5.17. Suppose U is an open subset R™, that V is an open subset of R™,
and that f: U — R™ and g : V — RP are both C¥, and that f(U) C V. Show that
g o fisalso CX.

Exercise 2.5.18. Suppose f, g : U — R are both C*. Show that fg is also C¥.

Exercise 2.5.19. Suppose f : U — Ris C* and f(x) # 0 for all x € U. Show that
1/fis also C*.

Possible hint. Note that 1/f is f composed with the single variable inversion

function.

Exercise 2.5.20. Suppose f : U — R™ is étale, injective, and Ck for some k > 1.
Show that ! is also Ck.

Possible hint. This is a multivariable version of proposition 1.4.11, and can
be proved by using a similar induction. Some ingredients you might think
about combining are the inverse function theorem 2.4.15 and proposition 2.5.9

and lemma 0.5.18 (and their proofs).

2.5.C Equality of mixed partials

Definition 2.5.21 (Mixed partials). Suppose f : U — R is C2. The partial deriva-
tive 0;f : U — Rforanyi=1,..., mis a continuously differentiable function, so
its jth partial deriative 95(9;f) is a continuous function U — R foranyj = 1,...m.

We denote the function 9;(9;f) more succinctly as 9; ;f, or as

0%f
an aXi

Theorem 2.5.22 (Equality of mixed partials). Suppose f : U — R is C2. Then, for

all 1,j = 1,...,m, we have 0; ;f = 0y ;.
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Proof. Observe that

a]- ,if(a) = lim

li f(a+ hiey + tjej) —fla+ t; e)’) _ lim fla+ tiey) — f(a)
_ 11 t;—0 ti t;—0 ti
- tj—>0 t]
. . f(a+tiei+t]~e]~)—f(a+tiei)—f(a+t]~e]~)+f(a)
= lim lim .
t]-HO ti*)O tlt]

Notice that, if we unwind the definition of 9;;f(a) in the same way, we end
up taking a double limit of the same expression, but the order of the limits is

interchanged. In other words, if we define

fla+ tie; + t; e)') —fla+tiey) — f(a+ tje]-) +f(a)
tity

o(ti, tj) = ’
then

0;,if(a) = lim lim o(t;,t;) whereas 0;;f(a)= lim lim o(ti,t;).
tj—>0 t;—0 t;—0 tj—>0

So, to prove the theorem, it is sufficient to prove that
0;,if(a) = lim o(t,t).
t—0
Fix a nonzero real number t and consider the function

o(s) = f(a+ se; + tej) — f(a + seq).

Notice that
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and that « is differentiable with
«’(s) =dif(a+ se; + tej) — dif(a+ seq).

Applying the mean value theorem 1.3.3 to o on the closed interval between 0

and t, there exists &;(t), strictly between 0 and t, such that

o(t) —a(0)  of(&i(t))  0if(a+ &ilt)ei +tey) —0if(a+ &ilt)ei)
t2 N t t '

o(t,t) =
Now consider the function
B(s) =0if(a+ &i(t)ey + sej).
Then f is differentiable with
B'(s) = 05,if(a+ &i(t)ei + sej),

so, applying the mean value theorem 1.3.3 to 3 on the closed interval between 0
and t, we find that there exists &;(t), strictly between 0 and t, such that

B(t) —B(0)

o(t,t) = n

= B'(&(t)) = 05,if(a+ &i(t)es + &;(t)e;).

Now notice that, since both &;(t) and &;(t) are between 0 and h, we have

&i(t),&;(t) — 0ast — 0. Since 95 ;f is continuous at a, we have
lim o(t,t) = %lrr(l) aj,if(a + &i(t)ey + E,j (t)e)‘) = 6j,if(a). O
*)

t—0

Remark 2.5.23. If f : U — R is C2, the hessian of f at a, denoted f”(a), is the
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matrix of second partial derivatives.

01,1f(a) 072f(a) --- 97,mf(a)
f(a) = : : - :
am,lf(a) am,Zf(a) cee am,mf(a)

Theorem 2.5.22 is equivalent to the assertion that f/(a) is a symmetric matrix.

There are many versions of this theorem, all with slightly different hypotheses.
For instance, there is the version due to Peano [ , theorem 9.41]. In any
case, it’s worth remarking that some continuity condition on the mixed partials

is crucial; it is not enough that the mixed partials exist.

Exercise 2.5.24. Consider the following function f : R* — R.

2 2

xy———— if (x, 0
fxy) = Y2 (xy) #

0 if (x,y) =0
(a) Calculate all of the following.

of of 2 O
0x 0y 0yodx 0xdy

(b) Show that the mixed partials are discontinuous at the origin.

(c) Show that the mixed partials disagree at the origin.

2.5.D Taylor’s theorem x

The main difficulty in the multivariable Taylor’s theorem is notation; we’ve al-
ready done most of the hard work of the proof with the single variable version (cf.
theorems 1.4.17 and 1.4.23). Let us first discuss some typical notation conventions

that make the statement of Taylor’s theorem more readable.
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Multi-index notation

Definition 2.5.25 (Multi-index notation). A multi-indexisanm-tuple x = (ot1,..., &m)
where «; is a non-negative integer. For a multi-index « and any non-negative

integer {, we define the following.

l| = o1 + a2 + -+ + otn

ol = oqlo! - ogp !

¢ _ﬁ_ (!
o) &l gl o !

If x and (3 are both multi-indices, we define the sum « + 3 componentwise; then
we have |« + B| = |«| + |B|. We let 0 denote the multi-index (0,0,...,0), and for
eachi=1,..., m, welet 1; denote the multi-index that is 1 in position i and zero
everywhere else.

Ifx =(x1,...,xm) € R™, we define

Xm

& X (xz...
xT =x7"%, X

In particular, we have x% = 1and x" = x;. Also, if f: U — Ris C!*l, we define
0%f = af“ 85‘2 o0 of,

where we use the convention that 3°f = f. In particular, we have 3'if = 9;f.

Caution. Note that, the way we’ve set up notation, superscripts and subscripts
on 0 denote distinct concepts. For example, if f : R? — Ris a function, 9(1,1)f(a)
denotes the directional derivative in the direction of the vector (1,1), while

911 f(a) is the mixed partial derivative 91 >f(a).

We now establish some rules for doing algebra with multi-indices.

Exercise 2.5.26. Suppose «, 3 are multi-indices and x = (x1,...,xm) € R™.
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Prove that

x*xP =x
Exercise 2.5.27 (Equality of mixed partials, multi-index version). Suppose «, 3
are multi-indices and f : U — R is C!**Bl. Prove that
0%0Pf = 0% TPy,
Possible hint. First consider the case when « = 1; for some i = 1,..., m. Prove
this by induction on [B].

There is a convenient combinatorial interpretation of (f{) when { = |&| which
generalizes the combinatorial interpretation of binomial coefficients. For this

reason, the (fc) are often called “multinomial coefficients.”

Theorem 2.5.28. Suppose « is a multi-index and { = |o«|. Then the multinomial
coefficient (%) is the number of ways of placing { objects into m bins, with oy objects
in the first bin, o, objects in the second bin, and so on. In particular, (i) is a positive

integer.

Proof. The number of ways of choosing «; objects out of the { to place in the first

()

Now we have { — o1 objects remaining, and the number of ways of choosing «;

bin is

of them to be placed into the second bin is

()

Continuing in this way, the total number of ways of placing the { objects into the

first m bins is the product of all of these binomial coefficients

)
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But if we expand out each of these binomial coefficients, this product is

(! (6—061)! N (E—oc1—~‘—ocm,1)! _<€>

o'l — o) o€ — o — axp)! . ool —og — -+ — oty)! o

because the numerator in each of the fractions starting from the second cancels
with one of the terms in the denominator of the previous fraction, and because

|| = € means that (£ — o7 — -+ — o) = 1. O
Corollary 2.5.29. Suppose &' is a multi-index and |«'| = €+ 1. Then
t+1 i
(2)-.Z, ()
OC/:O(—F]i
where the sum is over all « such that &' = o« + 15 for some 1.

Proof. Suppose we want to place £ + 1 objects into m bins with &/ objects in the
ith bin for all i. On the one hand, theorem 2.5.28 tells us that the left hand side
is the number of ways of doing this. On the other hand, if cx{ > 1, then there
is a unique multi-index « such that ' = « + 1;. We can place the first object
in bin 1, then the number of ways of distributing the remaining ¢ objects is (i)

Summing over all such i yields precisely the sum on the right hand side. ]

Exercise 2.5.30 (Multinomial theorem). Prove that, for any x = (x1,...,Xm) €

(X1 4+ +xm)t = Z <i>x°‘.

[ox|=¢

R™, we have

Possible hint. You can do it by induction. A more insightful proof involves using

the combinatorial interpretation of theorem 2.5.28.

Multi-index notation also gives us compact notation for multivariable polyno-
mials.
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Definition 2.5.31. A polynomial p in m variables is a function R™ — R of the form
p(x) = Z cax®
[0 8

where x = (x1,...,Xm) € R™, the sum is over all multi-indices, and for every
multi-index «, we have ¢« € Rand c, = 0 for all but finitely many « (ie, the sum
displayed above is finite). The degree of p is the maximum |x| such that c« # 0.

If p = 0, we define its degree to be —co.

Exercise 2.5.32. Suppose p is a polynomial of degree at most k in m variables. If
Ip(h)| = o(|h|*) as h — 0, show that p = 0.

Statement of Taylor’s theorem

We’re now ready to state the multivariable version of Taylor’s theorem.

Theorem 2.5.33 (Taylor). Suppose U is a convex open set, f : U — R is C* for some
non-negative integer k, and a € U. Then there exists a unique polynomial py of degree
at most k in m variables, called the degree k Taylor polynomial of f at a, such that
[f(a +h) — px(h)| = o(|h/*) as h — 0. Moreover, we have

pr(n) = Y a“;a)h“. (2.5.34)
lx|<k '

Finally, if f is C**1, then for any h such that a +h € U, there exists & on the line
segment between a and a + h such that

fla+h) —p(h)= > thﬂ,

o |=k+1

While the notation for the Taylor polynomial is compact and aesthetically
pleasing, there’s a lot of information packed into very few symbols. Here is an

example.
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Example 2.5.35. Let U = RZ\ {0} and let f : U — R? be the function
f(x,y) = In(x* +y2).

See figure 2.5.36
Let’s calculate the degree 2 Taylor polynomial of f at the point (1,0). First of

all, we have
f“ ) O) = O)

which tells us the constant term of the polynomial. The linear terms in the Taylor
polynomial will depend on the partial derivatives of f. More precisely, note that

there are two multi-indices o with || = 1, which are « = (1,0) and &« = (0, 1).

We have the following.
of 2x
o0 =5, (0= X2 +y? (1,0)
2
20 1f(1,0) = X1, 0) = 52— —0
ay X +y (x,y)=(1,0)

The quadratic terms of the polynomial will depend on the second order partial
derivatives, ie, on 0%f(1,0) where || = 2. There are three such multi-indices:
(2,0),(1,1),and (0, 2). We have the following.

02t 242 — 2x2

920)(1,0) = S =(1,0)= 2 - — 2
ox (x* +Y2) [ (x,y)=01,0)
0%f —4xy

the(1,0) =5 (h0) =~ =0

T dyox (2 +Y2)? | (x,y)=(1,0)

02f 2x? — 2y?

(O f(1,0) = = (1,0) = —— —2
oy (x* +Y7) [ (x,9)=(1,0)

You may find it convenient to organize your partial derivative calculations in a

tree-like diagram, as in figure 2.5.37.
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These calculations let us assemble the degree 2 Taylor polynomial.

(1,0) (0,1)
pa(h, k) = £(1,0)(h, k)00 4 & L0 g ey O FOD) o)
(1,0)! (0,1)!
9(2:0)¢(1,0 oL 1)f(1,0 9(0:2)£(1,0
—Zor o()' )(h,k)(2’°)+(] ](), )(h,k)("”+(0 2(), ) (h, 1) (@2
=2h—h? + k%

Taylor’s theorem 2.5.33 states roughly that f(1 + h, k) ~ 2h — h? + k? for small
(h, k). More precisely, the assertion is that the difference between the left and
right hand sides above is o(|(h, k)[?) as (h, k) — 0.

Iexhort you to work through the following example yourself before proceeding.
It may start feeling tedious at some point, but power through it. Facility with
calculating explicit examples is what gives you the intuition you need to do

abstract proofs.

Exercise 2.5.38. Let f : R> — R be the function f(x,y) = sin(xy?). Calculate the
degree 3 Taylor polynomial of f at the origin.

Here is some practice using the statement of Taylor’s theorem in proofs.

Exercise 2.5.39. Let f : R2 — R be a C? function. Suppose a € R? is a critical
point of f and 3(""f(a) = 0. Use the degree 2 Taylor polynomial of f at a to
formulate a rule for determining whether or not a is a local extremum, and if it

is, what kind of a local extremum it is. Then prove your rule.

Proof of Taylor’s theorem

Proof of Taylor’s theorem 2.5.33. Webegin witha calculation. Fixh = (hy,...,hy) €
R™ such that a + h € B and consider the function y(t) = a + th. Note that
vY'(t) = h, and all higher derivatives of y vanish. Then g = f oy is a single

166



2.5 CX hierarchy

variable C* function, and we claim that

g = > <i>(a°‘foy)(t)h“ (2.5.40)

|ox|=¢

forallt € [0,1] and £ = 0,1,...,k. When { = 0, equation (2.5.40) is just the
definition of g. We'll actually prove equation (2.5.40) in general by induction on
{, and ¢ = 0 suffices for the base case for this induction; that said, because the
notation gets a bit dense, it is instructive to look at a couple of small values of ¢
separately to help us understand the general inductive step.

The case when { = 1 follows quickly from the chain rule. Indeed, we have
v'(t) =h, so

using theorem 2.3.36 for the second step. This is precisely equivalent to equa-
tion (2.5.40) for £ = 1.
Now consider the case when £ = 2. For any i = 1,..., m, we can calculate the

derivative of 0;f o y using the chain rule. We have

(0ifoy)'(t) = (3:1) (v (D))y' (1)
f

j=1

05 1f(v(t))hy

which means that

g"(t)=> D> 9 :f(y(t)hjhy

i=1j=1
=3 20;1f(y(t)hjhi + > 03f(v(t))h?

j<i

where we have used the equality of mixed partials 2.5.22 for the second step. This
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too is equivalent to equation (2.5.40), because a multi-index o« such that || = 2
either is 2 in one entry and 0 everywhere else (in which case o! = 2 so ( )=1),
or else is 1 in two entries and 0 everywhere else (in which case «! = 1so ( ) =2).

Now for the general inductive step. Suppose we know equation (2.5.40) for
some non-negative integer {. The chain rule then gives us the second step in the

following.

g(“_”(t) — g Z <€)(atx O’Y)(t)hoc

Z ) ((3%F)'(v(t))h) h™

We have used theorem 2.3.36 together with equality of mixed partials (in the
multi-index form of exercise 2.5.27) for the third equality, and corollary 2.5.29 for
the final equality. This completes the induction and proves equation (2.5.40).
We'll prove the “with remainder” form of theorem 2.5.33 first, and then use it
to prove the “without remainder” form, as in [ , section 2.4]. Suppose f is
C**1. Then the single variable function g defined above is also C**'. The single

variable version of Taylor’s theorem with remainder 1.4.17 tells us that

kL0 (k+1)
g'”0) g (s)
g =) 4+ (k1)

for some s € (0,1). But then, applying equation (2.5.40), this equation says
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precisely that
0*f(&)

hCX
ol

fla+h) =pe(h)+ >
lo|=k+1
for & = a + sh, where py is the polynomial defined in equation (2.5.34).

Now let us prove the existence part of the “without remainder” form. In other
words, we want to prove that, if f is C* and py is defined as in equation (2.5.34),
then [f(a + h) — px(h)| = o(|h/*) as h — 0. If k = 0, this follows immediately
from the definition of continuity of f at a, so we can assume that k > 1. For any
nonzero h € R™, we can apply the “with remainder” form of Taylor’s theorem

that we’ve already proved to see that

fla+h) =pet(h)+ ) a“;gi)hcx:pk(hH y ao«f(a)o—da“f(a)h“

lx|=k lx|=k
where £ is some point on the line segment between a and a + h. In other words,

we have
0%f(&) — 0%f(a)

ol

flat+h) —pe(h) = ) h*

|ox|=k

and we want to prove that this is “small.” Notice that

flat+h) —pu(hl g RA(E) = 0%fla): ] - RH(E) —0fla)]

[k ![hfk = !
lx|=k lx|=k

Here the first inequality is just the triangle inequality, and the second inequality
is because
R =Th{" - il < Ih.

Choose € > 0. Since f is C¥, we know that 0%f, and therefore also 9% /«!, is

continuous for all multi-indices o such that || = k. There are only finitely many
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such multi-indices, so there exists a 6 > 0 such that

Z |0%f(x) — 0%*f(a)

< €
o!

lx|=k

for all x € B(a, ). Now if |h| < §, then & € B(a, ), so we have

flath —puhl g 1)o@l _,
= ! )

[k
lx|=k

This proves that |[f(a + h) — px(h)| = o(/h/¥) as h — 0. Finally, the uniqueness
assertion of theorem 2.5.33 follows from exercise 2.5.32, just as in the proof of the

single variable version 1.4.17. O

2.5.E Smooth functions

Definition 2.5.41 (Smoothness). We say that a function f : U — R™ is C*, or
infinitely differentiable, or smooth, if it is C* for all k.

In section 1.4.D, we formulated the principle that smooth single variable func-
tions can be tailored to almost arbitrary specifications. The same principle re-
mains true of smooth multivariable functions, and we can often bootstrap up

from the single variable case. Here are some examples.

Bump functions

Recall the definition of support in definition 1.4.33. Just like in the single variable
setting, a “bump function” is a smooth function with compact support. We can

use single variable bump functions to construct multivariable bump functions.

Exercise 2.5.42. Let { : R — R denote the single variable bump function from
example 1.4.34. Then define oc: R™ — R by

x(X1y vy Xm) =W (x1)h(x2) -+ P (xm).
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See figure 2.5.43. Show that « is a bump function supported on the hypercube
[—1,1]™ (ie, the closed unit ball with respect to the max norm).

Exercise 2.5.44. Let {} : R — R denote the single variable bump function from
example 1.4.34. Then define oc : R™ — R by

X(X7yeeyxm) = WX+ +x2).

Show that & is a bump function supported on the closed unit ball B(0, 1) with
respect to the euclidean norm.

Paths

Definition 2.5.45 (Paths). Given a,b € R™, a path starting at a and ending at b
is a continuous functiony : [0, 1] — R™ such that y(0) = aand y(1) = b.

e We say that vy is smooth if it is the restriction to [0, 1] of a smooth function
(—e, 14+ €) — R™ for some € > 0. This means that we can talk about the

iterated derivatives y(*)(t) not just for t € (0, 1), butalso for t =0, 1.

e We say that v is inside or contained in an open subset U of R™ if y(t) € U
forall t € [0, 1].

We met straight line paths between any two points of R™ in definition 2.4.3,
and then in definition 2.4.5, we defined a subset S C R™ to be convex by requiring

that all straight line paths between pairs of points of S are inside S.

Exercise 2.5.46. Check that the straight line path between any two points in R™

is smooth.

Exercise 2.5.47 (Slowing down smooth paths). Suppose y is a smooth path in
R™. Show that there exists a smooth path ygjow-start With the same start and end

as y and the same image as vy, such that

) an(0) =0

yslow—start
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for all k > 1. Then show that there also exists a smooth path Ygjow-siop With the
same start and end as y and the same image as v, such that

(k) —
yslow—stop(1 )=0

forallk > 1.
Possible hint. To slow down the start of the path, modify the “infinitely flat”
function of exercise 1.4.30 to find a function f : R — R such that f(¥)(0) = 0 for

allk > 0 and f(1) = 1, and then consider Yqow-start =Y © f.

Definition 2.5.48 (Concatentation of paths). If y; and v, are paths in R™ and
v2 starts where y1 ends, we define their concatenation y1 «y> : [0,1] — R™ as
follows.

v1(2t) ift<1/2

va(2t—1) ift>1/2

(v1*v2)(t) =

In other words, y1 = y2 “travels along v at twice the speed,” and then “travels

along v, at twice the speed.”

Observe that if v; and v, are both inside U, then y; x y> is also inside U.
However, even if vy x vy, are both smooth, their concatenation need not be. To

concatenate smoothly, we can use the following.

Exercise 2.5.49 (Smooth concatenation). Suppose y1 and v, are smooth paths in
R™ and vy, starts where y; ends. Using the notation of exercise 2.5.47 and defi-
nition 2.5.48, show that

Y = Y1,slow-stop * Y2, slow-start

is smooth.

Exercise 2.5.50. Suppose U is a connected open subset of R™. Show that, for
any pair of points a, b € U, there exists a smooth path inside U starting at a and

ending at b.
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Possible hint. Use exercise 2.5.49 and the first part of exercise 2.4.11.
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Figure 2.1.2: Here is a “topographic map” style picture of the function f(x,y) =
x? +y?. Each circle is a level set of f. The innermost circle is the set
of points such that f(x,y) = 1 (this is a circle of radius 1). The next
circle from the inside (drawn in gray) is the set of points such that
f(x,y) = 2 (this is a circle of radius v2). In general, the kth circle
from the inside is the set of points such that f(x,y) = k. Itis a circle
of radius vk, and the circles where vk is an integer are drawn in
black rather than gray. The fact that the circles get “closer together”
as k increases is an indication that the function grows more and
more rapidly as we get further from the origin.
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Figure 2.1.3: The graph of the function f(x,y) = x% + y?. “Vertical” slices (ie,
slices along planes that are parallel to either the xz-plane or the
yz-plane) are parabolas. “Horizontal slices” (ie, slices along planes
parallel to the xy-plane) are circles.

175



2 Multivariable derivatives

Figure 2.1.4: The graph of the function f(x,y) = x? +y?, together with the point
(a,f(a)) = (2,1,5) and two of its tangent lines: one parallel to the
xz-plane, and the other parallel to the yz-plane.
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Figure 2.2.11: The graph of the function f(x,y) = \/x? + y? is an infinite cone,

extending upwards, with its point at the origin.
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Figure 2.2.13: The graph of the function f(x,y) = +/Ixyl. The graph has four
“leaves,” which look a bit like the “leaves” of the Sydney Opera
House, or of the Lotus Temple in New Delhi.
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Figure 2.3.23: The graph of the function f(x,y) = x> —y?. Vertical slices along
planes parallel to the xz-plane are downwards facing parabolas,
while those along planes parallel to the yz-plane are upwards
facing parabolas.
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(y—x?)(y — 3x?).

y) =

)

Figure 2.3.25: The graph of the function f(x
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Figure 2.3.31: Two views of the graph of the function f from exercise 2.3.30. The
one on the left is obtained from the one on the right by a 90°
rotation counterclockwise around the z-axis.
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Figure 2.3.33: The graph of the function f from exercise 2.3.32.
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2.5 CX hierarchy
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Figure 2.3.40: The function f(r,0) = (r cos 0, r sin 0) of example 2.3.39 transforms
the pictures on the right to the pictures on the left.
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2 Multivariable derivatives

Figure 2.3.43: The image of the function f(t) = (t2,t3). The origin is f(0).
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2.5 CX hierarchy

Figure 2.3.45: The image of the function f(t) = (t2 —1,t3 — t). We have f(0) =
(—1,0) and f(£1) = (0,0).
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a+h

]

a aj

Figure 2.5.3: A picture of a,a; and a, = a + h, as defined in the proof of theo-
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rem 2.5.1. Defining &; and &; using the mean value theorem as in
the proof, the point a + &; ey is somewhere along the horizontal line
joining a and a + hy, and the point a 4+ hy + &;e; is somewhere on
the vertical line joining a + hy and a + h.
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In(x? +y?)
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Figure 2.5.37: Iterated partial derivatives of the function f(x,y) = In(x? +y?).
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Figure 2.5.43: The graph of the function ¥(x,y) = P (x)P(y), where { is the
single variable bump function from example 1.4.34
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3 Manifolds

Roughly speaking, a “manifold” is a locally flat geometric object without pre-
ordained local coordinate systems. Before we formalize what we mean by this,
it’s useful to philosophize a bit. First of all, let’s think about what “locally flat”
means. Consider, for example, the surface of the earth. On the one hand, we
know that it’s a sphere (approximately, at least). On the other hand, we also
know from personal experience that the curvature of the earth is irrelevant in
situations where everything of concern is within a few miles of us. The earth
looks flat. It is in this sense that the surface of the earth is “locally flat.”

When we have such a locally flat geometric object, it’s often useful to introduce
“local coordinate systems.” For example, we talk about things being “in front
of” us or being “behind” us in our everyday lives, despite the fact that, if you
go far enough forward, you'll eventually end up behind where you started! In
other words, “in front of” and “behind” make no sense if we're thinking globally
(ie, if we're thinking at the level of the entirety of the earth). They only make
sense “locally,” but despite that, they're incredibly useful notions in everyday
life. Similar considerations apply with “left” and “right.”

It’s also useful to allow local coordinate systems to change depending on the
situation we’re in. Returning to the example of “in front of” and “behind,”
notice that these notions don't refer to absolute directions: if you turn 90° in
some direction, what was “in front of” you before you turned isn't “in front of”
you anymore. After your 90° turn, there’s now a new useful notion of “in front
of.” In other words, changing the situation you're in has made a different local

coordinate system useful.
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3 Manifolds

Let’s now return to the sentence we started with, that “manifolds are locally
flat geometric objects without pre-ordained local coordinate systems.” We'll see
below how to formalize “locally flat” mathematically. The way we’ll avoid having
pre-ordained local coordinate systems is by remembering all possible choices of
local coordinate systems!

It’s also worth remarking that this chapter marks a somewhat significant turn-
ing point in our meditation of derivatives and tangents. We began chapter 1
with the observation that we could formalize our intuitive idea of “tangent line”
using derivatives. In the next chapter, we’ll see that, in the abstract setting of
manifolds, we can formalize the idea of “tangent vector,” and then use it to define

an even further generalization of the derivative.

3.1 Definition of a manifold

At this point, we will need to use the language of topological spaces. If you've
seen metric spaces but not topological spaces, you should skim through sec-
tion 0.7.A (in particular, at least definitions 0.7.1, 0.7.10, 0.7.14 and 0.7.15 and ex-
ample 0.7.2).

3.1.A Charts

Throughout this section, let X be a topological space. Recall that we want for X
to be “locally flat.” Formally, this means that we can cover X with open subsets,
each of which is “flat” in the sense that it is homeomorphic to an open subset
of R™. Notice that, if we remember not just the fact that each open subset U in
that cover is homeomorphic to R™, but the actual homeomorphism, then we can
transfer the usual coordinate system on R™ through the homeomorphism onto
U. In other words, a homeomorphism between U and an open subset of R™ tells
us both that U is “flat,” and gives us a coordinate system on U. This is precisely

what’s accomplished by the following definition.
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3.1 Definition of a manifold

Definition 3.1.1 (Chart). A chart on Xis a pair (U, ¢) consisting of an open subset

U € X and a continuous, open, and injective function ¢ : U — R™ for some n.

e The integer n is called the dimension of the chart, and write dim(U, ¢) to

denote it.
e The function x is called the coordinate function of the chart.

o If a € X, we say that the chart (U, ¢) contains a if a € U. If (U, ¢) contains
a and @(a) = 0, we say that (U, @) is centered at a.

e For alli = 1,...,n, we define ¢; := m; o ¢. For any a € U, the real
numbers @1(a),..., ¢n(a) are called the coordinates of a with respect to the
chart (U, @).

Example 3.1.2. Let X = R? and let U denote R? minus the non-negative x-axis.
In other words,
U={(x,y):x<0ory # 0}.

Let ¢ : U — R? be the function which sends a point p to its polar representation
e(p) = (r(p),0(p)), where r(p) = [pl and 6(p) is the angle in radians strictly
between 0 and 27t formed between p and the non-negative real axis. Let us show
that (U, ¢) is a chart.

Observe that ¢ is injective, we have
(P(u) = {(T, e) T> O’ GRS (0)27[)})

and the inverse function of ¢ is given by @ '(r,0) = (rcos0,rsin0). Clearly

@~ is continuous. In fact, it is even étale, since

:rz;éO

0 —rsind
det(@~1)'(r,8) = det [COS rem ]

sin® rcos6
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3 Manifolds

on ¢(U), so the inverse function theorem 2.4.15 tells us that ¢!

is open. This
means that ¢ is continuous as well, proving that (U, @) is a chart.
Notice that the chart (U, ¢) contains the point (1,1). We calculate the coordi-

nates of (1, 1) with respect to this chart by evaluating ¢(1,1). We find
p(1,1) = (V12 + 12, arctan(1)) = (V2,/4).

In other words, ¢ outputs precisely the polar representation of (1,1).

Remark 3.1.3. If (U, @) is a chart on X and a € U is a point, we can “recenter the
chart at a” by replacing ¢ with the function ¢ given by ¢(x) = @(x) — ¢(a). In
other words, if § = ¢ — @(a), then (U, @) is also a chart, and we have ¢(a) = 0.

3.1.B Compatibility of charts

Charts formalize the idea of local coordinate systems; the following formalizes

the idea of changing local coordinate systems.

Definition 3.1.4 (Transition function). Suppose (U, ¢) and (V,1) are charts on
X. The transition function from (U, @) to (V, ) is the function 1 o .

eUNV) 2L unv Y5 punv)

Notice that the domain ¢ (U N V) is an open subset of R™ for m = dim(U, ¢)
and the codomain (U N V) is an open subset of R™ for n = dim(V, ). In other

1

words, 1 o @' is precisely the kind of function whose derivative we studied in

chapter 2.

Definition 3.1.5 (Compatibility of charts). The two charts (U, ¢) and (V,1{) on
X are smoothly compatible, or just compatible, if the transition map P o @' from
(U, @) to (V,1) and the transition map ¢ o~ from (V, ) to (U, @) are smooth.
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3.1 Definition of a manifold

Example 3.1.6. Letid : R — R denote the identity map and let ¢ : R — R denote
the map @(x) = x3. Both maps are homeomorphisms, so (R,id) and (R, ¢) are
charts. However, these two charts are not compatible. The transition function
from (R,id) to (R, ¢) is

R=id(R) 95 R —® ¢(R) =R,

which is just ¢, which is in fact smooth. However, in the other direction, the

transition function is
-1
R=¢(R) 22— R —2- id(R) =R,

which is the function ¢ ' (x) = ¥/x. In other words, the transition function from

(R, @) to (R,id) is not even differentiable.

Exercise 3.1.7. Determine whether or not each of the following charts (U, ¢) is
compatible with (R,id).

(a) U=Rand @(x) = 2x.

(b) U=Rand @(x) = —x.

(©) U=Rand @(x) = xIx|.

(d) U=Rand ¢(x) = —x3.

() U= (—m/2,7/2) and @(x) = tan(x).
(f) U= (0,00) and @(x) = In(x).

(2) U=Rand @(x) =x°.

Use these examples to formulate a conjecture for determining when a chart (U, ¢)

on R is compatible with (R,id). Then prove your conjecture.
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3 Manifolds

Example 3.1.8. Let id : R? — R? denote the identity map and ¢ : U — R? the
polar representation map from example 3.1.2. The two charts (R?,id) and (U, p)
are compatible. To see this, observe that the transition function from (U, ¢) to
(R?,id) is the function

o' id ., . _
e(U) — U —— id(U) =4,

1

which is just @ ~'. We saw in example 3.1.2 that ¢~ is given explicitly by

@ '(r,8) = (rcos0,rsin0),

which is a smooth function. Going the other way, the transition function from

(R2,id) to (U, ) is precisely .

U=id(U) 295 U —2 o)

1 is étale, so its inverse function ¢ is

As we saw in example 3.1.2, the map ¢~
smooth by exercise 2.5.20. Thus both transition functions are smooth, so the two

charts are compatible.

Exercise 3.1.9. Show that two charts (U, ¢) and (V, ) are compatible if and only

if the transition function from (U, ¢) to (V, V) is smooth and étale.

Exercise 3.1.10. Suppose (U, @) is a chart and a € X is a point. Consider the
recentered chart (U, ) where § = ¢ —@(a), asin remark 3.1.3. Show that (U, ¢)
and (U, @) are compatible.

Remark 3.1.11. An important cautionary observation is that compatibility of
charts is not an equivalence relation on the set of all charts. It is certainly
reflexive and symmetric, but it fails to be transitive. For example, let @(x) = x3
and then consider the three charts (R, id), (R\{0}, ¢), and (R, ¢). The first two are
compatible with each other, and the second two are compatible with each other,

but the first and third are not compatible with each other (cf. example 3.1.6).
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3.1 Definition of a manifold

Exercise 3.1.12. Suppose (U, ¢) and (V,1) are compatible charts and that the
intersection U N V is nonempty. Show that dim(U, ¢) = dim(V, ).

Possible hint. Fix a point a € U NV, and consider the derivative of the transition

function o @~ " at @(a).

3.1.C Atlases and manifolds

Definition 3.1.13 (Atlas). Anatlas on Xis a collection A of compatible charts such
that covers X. In other words, a collection A of charts is an atlas if every pair of

charts in A is compatible, and

If A’ is also an atlas and A" C A, we say that A’ is a sub-atlas of A. An atlas is

maximal if there is no strictly larger atlas containing it.

Exercise 3.1.14 (Existence and uniqueness of maximal atlases). Prove that every

atlas A is contained in a unique maximal atlas.

Possible hint. Let A’ be the set of all charts that are compatible with all of the
charts in A. Prove that A’ is an atlas (caution: keep remark 3.1.11 in mind). Then

prove that it is maximal, and that it is the only maximal atlas containing .A.

Exercise 3.1.15. Suppose A and A’ are two atlases on X. Let us say that A and

A’ are compatible if the union A U A’ is an atlas.
(a) Show that the following are equivalent.
(i) A and A’ are compatible.
(ii) Each chartin A is compatible with every chartin A’.

(iii) A is a sub-atlas of the unique maximal atlas that contains A’.

(b) Show that compatibility is an equivalence relation on the set of all atlases on
X.
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3 Manifolds

Make sure you understand how the assertion made in part (b) above differs
from the assertion in remark 3.1.11. Compatibility of charts is not an equivalence

relation, compatibility of atlases is.
This leads us to the following definition.

Definition 3.1.16 (Manifold). A smooth manifold, or justa manifold, is a pair (X, Ax)
where X is a topological space and Ax is a maximal atlas. Often, we just write
“X” in place of the pair (X, Ax). Sometimes the maximal atlas Ax is called the

manifold structure or the smooth structure on X.

Exercise 3.1.14 tells us that any not-necessarily-maximal atlas on a topological
space X can be extended uniquely to a maximal atlas, thus giving X the structure
of a manifold. When constructing examples, we will usually give an explicit
finite non-maximal atlas and then use exercise 3.1.14 to extend it to a maximal
atlas; it is difficult to describe maximal atlases explicitly, because there are many,
many charts in maximal atlases. But it is often convenient for theorem statements
and abstract proofs to assume that the atlas that the manifold comes equipped

with is already maximal, which is why the definition is made the way it is.

Unimportant remark. For any k = 0,1,2,...,00, we could define charts to be
C*-compatible by requiring that the transition functions between them are C*
(rather than smooth, as in definition 3.1.5). This would lead to a definition of

C*-manifolds. In these notes, we’ll just stick to the k = oo case.

3.1.D Dimension

Definition 3.1.17 (Dimension). Suppose X is a manifold and a € X is a point.
By exercise 3.1.12, there is a unique integer n such that dim(U, ¢) = n for every
chart (U, @) € Ax containing a. This integer is called the dimension of X at a, and
is denoted dim (X). If there exists a single integer n such that dimy (X) = n for
all x € X, we say that X is equidimensional and that the dimension of X is n.
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3.2 Examples

Proposition 3.1.18. If the set N of natural numbers is given the discrete topology, the
function X — N given by x — dimy (X) is continuous. In particular, if X is a nonempty

connected manifold, it must be equidimensional.

Proof. To show that x — dimy (X) is continuous, we want to show that, for any

natural number n, the set
Xn ={x € X:dimy(X) = n}

is an open subset of X. Suppose a € X,,. Let (U, ¢) be a chart containing a. Then
dim(U, @) = n, and we have dimy (X) = n for all x € U. In other words, U C X,,.
Thus, for every a € Xy, there exists an open neighborhood of a that is entirely
contained inside X;,, so Xy, is open.

Now suppose X is connected and a € X. Let n = dim(X), so that a € X,,.
Then

X\ Xn = [ Xm

m#n
is a union of open sets and is therefore also open. Thus X,, is a nonempty subset
of X that is both open and closed. Since X is connected, we conclude that X = X,.

In other words, X is equidimensional of dimension n. O

3.2 Examples

3.2.A First examples
Euclidean space

Example 3.2.1. The single chart (R™,id), where id : R™ — R™ is the identity
map, defines an atlas on R™. We can extend this to a maximal atlas, called the
euclidean atlas on R™. Unless explicitly specified otherwise, we always regard R™
as a manifold by equipping it with the euclidean atlas. The polar representation

chart of examples 3.1.2 and 3.1.8 is an element of the euclidean atlas on R?.
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3 Manifolds

Exercise 3.2.2. For any r > 0, let ¢, : R — R be the function

t ift<0
(Pr(t) =
rt ift>0.

Note that ¢, is continuous and strictly increasing (hence also injective and open,

by exercises 1.3.15 and 1.3.16), so (R, @) is a chart. Note also that ¢ = id.
(a) Show that @ o @, = @, and that (¢,)" ! = @1 /r-
(b) Show that (R, ¢,) and (R, @) are compatible if and only if r = s.

(c) Let A, be the maximal atlas obtained by extending (R, ¢-). What can you
say about A, and A if v # s? Are any of these the euclidean atlas? What

can you conclude about the number of maximal atlases on R?

Exercise 3.2.3. Suppose U is an open subset of R™ and ¢ : U — R™ is a function.
Show that the pair (U, ¢) is a chart in the euclidean atlas on R™ if and only if ¢

is injective, smooth, and étale.

Circles and spheres

Exercise 3.2.4 (The circle S'). Let S denote the set of points in R? along the unit

circle. In other words,
ST={(x,y) e R*: x> +yZ =1}
(a) Do exercise 0.7.8. This shows that both ways that we might think to regard
ST as a topological space are actually the same.

(b) LetU=S"\{(0,1)}. Fora point a € S',let ¢(a) denote the x-coordinate of
the point where the line y = —1 intersects the line passing through (0, 1) and
a. This is sometimes called “projection from the north pole.” See figure 3.2.5.

If a = (x,y), find an explicit formula for ¢(a) in terms of x and y.
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3.2 Examples

Figure 3.2.5: Given a point a € U = ST\ {(0,1)}, we draw a line connecting a to
(0,1), indicated in red. The point where that line intersects the line
y = —1 (in black) is sometimes called the “projection” of a from
(0,1) onto R x {—1}. The x-coordinate of this point is ¢(a).
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3 Manifolds

(c) Show that @ : U — R is a homeomorphism. Thus (U, @) is a chart on S'.

Possible hint. Use geometry to write down a formula for the inverse function

to .

(d) Let V = ST\ {(0,—1)}. For a € V, let {(a) denote the x-coordinate of the
point where the line y = 1 intersects the line passing through (0, —1) and a.

Show that{ : V — Ris also a homeomorphism.

(e) Show that (U, ¢) and (V, 1) are compatible charts. Thus A = {(U, @), (V, )}
is an atlas on S'. Extending A to a maximal atlas Ag1, we have defined a

manifold structure on S'.

(f) Let W ={(x,y) € S : x > 0} be the “right half of the circle.” If m: W — Ris
the function nt(x,y) =y, show that (W, 7) is a chart and that it is compatible
with the two charts in the atlas A constructed above. Thus (W, 1) € Ag:.

(g) Canyou think of any other charts in the maximal atlas A g1, besides the three

discussed above?

Possible hint. There are many, many possibilities here. You could project other
halves of the circle onto the x-axis or the y-axis, like in (f). More interestingly,

you could also think about charts defined using trigonometric functions.

Exercise 3.2.6 (The n-sphere S™). Let S™ denote the set of points in R™*! that
have euclidean norm 1. Generalize exercise 3.2.4 and show that “projection from

the north pole” and “projection from the south pole” define an atlas on S™.
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3.2 Examples

Matrices and vector spaces

Example 3.2.7 (Matrices). There is an isomorphism of vector spaces @ : Mpxm —

R™™ where, if A € My, xm has entries a; j, then

ai,i

)

a2

az,i

An,m

If we endow M, xm with the canonical topology, then ¢ is automatically a
homeomorphism by example 0.7.18. In other words, the single chart (M, xm, @)
is an atlas on My xm. Extending it to a maximal atlas using exercise 3.1.14, we

see that we can regard M, 1, as a manifold. It is mn-dimensional.

The same process discussed above allows us to regard any finite dimensional
vector space as a manifold.
Constructions

Exercise 3.2.8 (Graphs of continuous functions). Suppose U is an open subset of

R™ and f: U — R™ is a continuous function.

(a) There are two ways we might think to regard U x R™ as a topological space.
One way is to use the product topology 0.7.6. The second way is to regard
U x R™ as a subset of R™ x R™ = R™*™ and then give U x R™ the subspace

topology 0.7.5. Show that these two topologies are the same.

(b) LetT ={(x,y) € Ux R™: f(x) =y} be the graph of f, regarded as a subspace
of U x R™. Show that the function 7t : ' — R™ given by n(x,y) = x is
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3 Manifolds

continuous, injective, and open.

Thus the single chart (T, 7t) defines an atlas on I'. Extending this to a maximal

atlas, we can regard I" as a manifold.

Exercise 3.2.9 (Open submanifolds). Let X be a manifold and U C X an open
subset. Show that
Au={(V,0) € Ax:VC U}

is a maximal atlas on U. We call U, equipped with this maximal atlas, an open
submanifold of X.

Exercise 3.2.10 (Product manifold). Let X and Y be manifolds. Let A be the set
of charts of the form (U x V, ¢ x V), where (U, @) € Ax, (V,1{) € Ay,and ¢ x
denotes the natural map U x V. — R™ x R™ = R™*™, where m = dim(U, ¢) and
n = dim(V,1{). Show that A is an atlas on X x Y. We call X x Y, equipped with

the corresponding maximal atlas, the product manifold.

3.2.B Mobius strip

Let B denote the box [0, 1] x (0, 1) inside R?, and let ~ be the equivalence relation
on B generated by declaring (0,y) ~ (1,1 —y) forally € (0, 1). See figure 3.2.11.
The equivalence class of a point (x,y) € B is denoted by [x,y]. Observe that
every equivalence class contains either 1 or 2 elements. The Mdbius strip M is
the set of equivalence classes in B. In other words, we take the box [0, 1] x (0, 1)
and “glue” its left and right edges, with a twist. If you've ever made a Mdbius
strip out of paper, you can probably see that we’ve formalized exactly that same
process. See figure 3.2.11, again.

We regard M as a topological space using the quotient topology, as in ex-
ample 0.7.7. To give X the structure of a manifold, we will construct an atlas
consisting of two charts. But, before proceeding with the formalism, let’s de-

scribe the intuition. Imagine making a cut in the Mdbius strip corresponding
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3.2 Examples

Figure 3.2.11: Above is a picture of the box B = [0,1] x (0,1) and the equiva-
lence relation ~ described above. Geometrically, this equivalence
relation identifies the vertical black line on the left of the box with
the vertical black line on the right of the box, but “with a twist.”
For example, the point (0,1/4) on the left is identified with the
point (1,3/4) on the right. If we pick up the box and actually glue
together the edges as indicated by the equivalence relation, we end
up with the Mobius strip as pictured below.
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to a vertical cut in the box B (ie, a cut perpendicular to the central red circle in
figure 3.2.11). Once we make such a cut, we can untwist the Mobius strip and
we're left with an open rectangle, which we can regard as an open subset of R.
In other words, we’ve defined a chart on M. The points along the cut are missing
from this chart; but if we construct a second chart by making a second separate
cut, we will have constructed two charts that cover M.

Let’s formalize this now. The easiest place to cut is the line along which we
glued the Mobius strip in the first place. In other words, we let

U={x,yleM:xe (0,1}

and let @ : U — R? be the function ¢([x,y]) = (x,y).

Exercise 3.2.12. Show that U is an open subset of M, and that the function

@ : U — R? is well-defined, continuous, injective, and open.

The second chart is a bit harder to describe mathematically, but the intuitive
idea is the same. We'll cut the Mdbius strip along the line corresponding the

vertical line x = 1/2 in B. Formally, let
V={xyle M:x#1/2}
and let{ : V — R? be the function defined by

(x,y) ifx<1/2
U([X»y]) =
x—1,1—x) ifx>1/2

Exercise 3.2.13. Show that V is also an open subset of M, and that{ : V — R? is
well-defined, continuous, injective, and open.

Exercise 3.2.14. Show that (U, ¢) and (V,1) are compatible.

Thus A = {(U, ¢), (V,)}is an atlas on the Mobius strip M. Letting Ap1 denote
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the corresponding maximal atlas, we obtain the structure of a manifold on M.

Exercise 3.2.15. Fix a constant ¢ € [0, 1), and let U. be the subset of M where
we’ve cut out the vertical line x = c. Show that U, is an open subset of M. Write
down a formula for a well-defined function ¢ : U. — R? which is continuous,
injective, and open; the image of ¢ should be an open box in R?, and you should
recover the function ¢ above when ¢ = 0, and the function {p whenc = 1/2. Then
show that (U, @) € Apm forallc € [0,1).

3.2.C More quotient examples

Here are some more examples of manifolds you probably recognize which you

probably recognize.

Exercise 3.2.16 (Cylinder). Let S denote the infinite vertical strip [0, 1] x R inside
R?, and let ~ be the equivalence relation generated by (0,y) ~ (1,y) forally € R.
Let C be the corresponding quotient space. Describe an atlas on C.

Exercise 3.2.17 (Torus). Let B denote the box [0, 1] x [0,1] inside R? and let ~
denote the equivalence relation generated by (x,0) ~ (x,1) and (0,y) ~ (1,y) for
all x,y € [0,1]. The torus T is defined to be the corresponding quotient space.

Describe an atlason T.

Sometimes quotient spaces can be very difficult to visualize directly; the only
way to have geometric intuition in these cases is to remember the space we started

with before quotienting, and the equivalence relation we defined on it.

Exercise 3.2.18 (Projective line). Let S! denote the circle as in exercise 3.2.4.
Define an equivalence relation ~ on S! which identifies antipodal points; in
other words, every point on S' is declared to be equivalent to the point that is
diametrically opposite it. The projective line P' is defined to be the corresponding
quotient space. Describe an atlas on P'.
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Exercise 3.2.19 (Projective plane). Let S? denote the 2-sphere as in exercise 3.2.6.
Define an equivalence relation ~ on S which identifies antipodal points. The
projective plane P? is defined to be the corresponding quotient space. Describe an

atlas on PZ.

3.2.D Submanifolds

We now define submanifolds. Recall that, if (L, @) is a chart, then @; = 71y 0 @
denotes the corresponding ith coordinate function.

Definition 3.2.20. Suppose S is a subset of a manifold X. Then S is a submanifold
of X if there exist charts (U, ¢) € Ax covering S such that

SNU={xeU:@ri1(x) =@rs2(x) == @n(x) =0}

for some non-negative integer k < dim(U, x). Such a chart (U, ¢) is called a slice
chart for S, or an adapted chart for S, and the integer k is called the dimension of S
in (U, @).

Intuitively, the definition says that, in the coordinate system on U induced by
the chart (U, ¢), the subset S N U should look like an open subset of a coordinate
hyperplanes (specifically, the coordinate hyperplane where xy ;1 =Xy 2 =+ =
xn =0, ie, the (x1,x2,...,xi)-hyperplane). See figure 3.2.21.

We'll justify the word “submanifold” in a moment by showing that submani-
folds are actually manifolds in their own right (cf. proposition 3.2.29). But first,
let’s discuss some examples. The intuition you should carry into these examples
is roughly that, if a subset “looks smooth” (ie, doesn’t have any “pointy” parts),

it should be a submanifold.

Example 3.2.22. Consider the set S = {(x,0) € R? : —1 < x < 1} inside R?. In
other words, S is the open interval (—1,1) along the x-axis inside R?. Then S is
a submanifold. Indeed, let U be the open box (—1,1) x (—1,1) inside R?, and
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Figure 3.2.21: Suppose X is a manifold (depicted above as an amorphous blob)
and S is a subset (depicted above as a squiggly line passing through
the blob). Then S is defined to be a submanifold of X if S can
be covered by charts (U, ¢) such that, under ¢, the set SN U
corresponds to a coordinate hyperplane in R™. In the picture
above, the map ¢ : U — R? pulls the squiggle S N U taut onto the

x-axis inside R2.
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@ : U — R? the inclusion map. Then (U, ¢) is a chart in the euclidean atlas on

R%, ¢2(x,y) =y, and
{(xy)elU:pa(x,y) =0} ={(x,y) eU:y=0}=S=SnNU

so (U, @) is adapted to S and S has dimension 1 in (U, ¢).

Example 3.2.23. Consider the parabola
S={(x,y) € R? 'y =x?,x € R\

This “looks smooth,” so it should be a submanifold. Let’s see how. It is sufficient
to produce a chart (R?, @) with the property that

S ={(x,y) € R*: @2(x,y) = 0}

This means we should take @>(x,y) = x> —y. Then @; should be a smooth
function @7 : R*> — R such that ¢ = (@1, @2) is injective and étale. In other

words, we want the Jacobian matrix

01 00
(p/(x,y) = ox ay
2x —1

to always be invertible. The easiest way to guarantee this is to take @3 (x,y) =x,
which makes det @’(x,y) = 1. Moreover, the function @(x,y) = (x,x*> —y) is
injective, since if @(x1,Y1) = @(x2,y2), then (x; ,x% —yp) = (xz,x% —y2), and
looking at the first coordinates shows that x; = x,, and finally looking at the
first coordinates shows that y; = y,. In other words, (R?, @) is a slice chart for

S in the euclidean atlas, so S is a submanifold of R?.
Exercise 3.2.24. Show that each of the following is a submanifold of R?.

(a) The y-axis.
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Figure 3.2.26: If U = {(x,y) : x > 0} is the right half of the plane and ¢ : U — R?
is given by ¢©(x,y) = (x> +y% — 1,x), then (U, @) is a chart on R?
that transforms the picture on the left into the picture on the right.
The vertical axis on the left turns into the parabola on the right.
The top half of the circle on the left turns into the horizontal line
segment on right. The vertical axis on the left stays remains the
vertical axis on the right.

(b) The open interval (—1, 1) along the x-axis.
(¢) Theliney = x.
(d) The curvey = x3.

Exercise 3.2.25. Show that the unit circle S' is a submanifold of R2.

Possible hint. Let U = {(x,y) € S" : x > 0} and let @(x,y) = (x,x?> +y* — 1). See
figure 3.2.26. Show that (U, ¢) is a chart that is adapted to S'. But this one chart
does not cover the circle, so then find more charts like this one that cover the

circle.

Exercise 3.2.27. Show that the graph of a smooth function f : R — Ris a subman-
ifold of R2.
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Caution. Sometimes, a subspace that is a manifold can fail to be a submanifold.
For example, you might notice that we showed in exercise 3.2.8 that the graph of
a continuous function R — R is a subspace of R? and is also a manifold; and then
we showed in exercise 3.2.27 that the graph of a smooth function R — R is a sub-
manifold of R2. And indeed, the graphs of continuous-but-not-smooth functions

provide examples of subspaces that are manifolds but not submanifolds.

Exercise 3.2.28. Let C be the cylinder from exercise 3.2.16 and let L be the line
L={[1/2,yle C:y e R}

Show that L is a submanifold of C.

We now make good on our promise of proving that submanifolds are in fact
manifolds. The proof is a little long because there are a lot of details to check,

but there are no real tricks or surprises.

Proposition 3.2.29. Let S be a submanifold of a manifold X. Suppose (U, @) € Ax is
adapted to S and S has dimension k in (U, @). Let @|s : SN U — R* be the function
defined by

¢ls(p) = (@1(p)y..., @x(p)).

Regarding S as a topological space using the subspace topology, the pair (SN U, @|s) is
a chart on S, and the set of all charts of this form is an atlas on S. Thus S becomes a
manifold if we equip it with the corresponding maximal atlas As. Finally, for any x € S,
if (U, @) € Ax isaslice chart for S containing x such that S has dimension k in (U, @),
then dimy(S) = k.

Proof. Observe that, by definition, ¢|s is the composite

SNuU -« u—2-» R " Rk

where the first map is the inclusion, and the final map 7t : R™ — R* projects onto

the first k coordinates (ie, 7t(x1,...,Xn) = (Xx1,...,%k)). Each of these maps is
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continuous, so the composite x|s is continuous as well. The proof that ¢|s is
injective is left as an exercise (cf. exercise 3.2.30).

Let us show that ¢|s is open. By definition of the subspace topology 0.7.5,
every open subset of S N U is of the form S NV where V is an open subset of U.
Suppose a € SNV. We want to show that ¢|s(a) is an interior point of @[s(SNV).
Since Vis openin U and ¢ : U — R™ is an open map, we know that ¢(a) is an
interior point of ¢(V), ie, there exists € > 0 such that every point of R™ within
€ of @(a) is inside @ (V). We claim that the € ball around ¢|s(a) is contained in
@ls(S NV). In other words, suppose we have y = (y1,...,yx) € R* such that
ly — ols(a)| < e. We will show thaty € ¢|s(SN V).

Notice that, since (U, ¢) is a slice chart for S, the vector ¢@(a) € R™ is the same
as ¢ls(a) € R* except that for some trailing zeroes. Let t : RX — R™ be the map

that concatenates vectors in R™~* with a string of n — k zeroes. In other words,

n—k times

Y1y Yk) = (Y1y-++yYxk,y 0y...,0).

Thus @(a) = (¢ls(a)). Now by the definition of the either the euclidean or the
max norm, we see that [L(y) — @(a)] = [y — ¢|s(a)|, which means that |(y) —
¢@(a)] < e. This means that t(y) € @(V) due to our choice of €. Since ¢ is
injective, there exists a unique b € V such that ¢(b) = t(y). This means that the
first k coordinates of b are zero, so b € SN U since (U, ¢) is a slice chart for S.

Moreover

¢ls(b) = m(e(b)) =m(i{y)) =y

which shows thaty € ¢[s(SNV).

Next up, suppose (U, ¢) and (U’, ¢’) are both charts in Ax that are adapted
to S. We want to show that (SN U, ¢ls) and (SN U’, ¢’'[s) are compatible. If
SNuUnN U’ is empty, there is nothing to do, so we assume that SN U N U’ is
nonempty. Let k and k’ be the dimensions of S in the two charts (U, ¢) and
(U, @’), respectively.
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The proof of compatibility is encapsulated by the following diagram.

—1 /
els(SnUNU) S snunu’ -5 o/ls(Snunu)

L [

p(UNV) —&—— UunvV —2—— o/(UNV)

Here t denotes the “concatenate with n — k trailing zeroes” map, and 7’ is the
“project onto the first k’ coordinates” map. You should stare at the above diagram
until you've convinced yourself that it “commutes,” ie, that the result of following
any two paths of arrows that start and end at the same place ends up being the
same. (The fact that the square on the left of the diagram commutes is because
(U, @) is a slice chart for S, and the fact that square on the right commutes is by
definition of the function ¢’ls.)

In other words, the diagram tells us that the transition function ¢’|s o (plg)!
isequalto 7’ o (@’ o @) ot Since (U, @) and (U’ ¢’) are compatible, we know

1

that ¢’ o ! is smooth. Thus the transition function ¢’|s o (¢|s)~"' is smooth.

Since S is a submanifold, we know that it can be covered by charts in X that

are adapted to S. Thus we’ve just shown that the set
A={(SNnU,ls): (U, ¢) € Ax is a slice chart for S}

is an atlas on S. The assertion about dimy (S) follows immediately. O
Exercise 3.2.30. Show that ¢|s is injective.

Exercise 3.2.31. We now have produced two maximal atlases on the unit circle:
one we produced in exercise 3.2.4, and then another is produced by exercise 3.2.25

and proposition 3.2.29. Show that these two maximal atlases are the same.

We've used the word “submanifold” once before, in exercise 3.2.9 where we

defined “open submanifolds.” Let us now show that this earlier usage of the
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word “submanifold” was justified and does not produce any conflicts with our

new definitions.

Exercise 3.2.32 (“Open submanifolds are submanifolds”). Suppose X is a man-
ifold and U is an open subset. Show that U is a submanifold (in the sense
of definition 3.2.20), and that the maximal atlas on U constructed by proposi-

tion 3.2.29 is equal to the atlas described in exercise 3.2.9.
Possible hint. Show that a chart (V, @) € Ax is a slice chart for U if and only if
VCu.

Here is another property you would hope would be true.

Exercise 3.2.33 (“Submanifolds of submanifolds are submanifolds”). Let X be a
manifold, S a submanifold of X, and T a submanifold of S. Show that T is a

submanifold of X.

Finally, here is a result that lets us produce many manifolds by considering

graphs of smooth functions on euclidean space.

Proposition 3.2.34. Suppose U is an open subset of R™ and f : U — R™ is smooth.
Then the graph
I'={(x,y) e Ux R™: f(x) =y}

is a submanifold of U x R™.

Proof. Consider the function ¢ : Ux R™ — R™™™ givenby ¢(x,y) = (x, f(x) —y).
Then ¢ is injective, since if @(x,y) = (a,b), then clearly x = aand y = f(a) — b,

so any input to ¢ is determined by its input. It is also clear that ¢ is smooth. If
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we compute the derivative, we find that

0 - 0 0
0 .. 0
’ 0 0 e 1 0 o --- 0 I
¢'(x,y) = =1,
01f1(x) 92f1(x) -+ Omfi(x) —1 f(x) —
01f2(x) 02f2(x) --- Omfa(x) O —1
101fn(x) 02fn(x) -+ Omfn(x) O 0O .- —1]

where I, denotes the v x r identity matrix. In other words, the Jacobian matrix
®’(x,y) is a lower triangular (n +m) x (n+ m) matrix with determinant (—1)™.
Thus ¢ is étale, so (U x R™, @) is a chart in the euclidean atlas on U x R™. Itis

evidently a slice chart for I, proving that I' is a submanifold of U x R™. O

Exercise 3.2.35. Suppose U is an open subset of R™ and f : U — R™ is a smooth
function. We have discussed two maximal atlases on the graph I" of f. One was
discussed in exercise 3.2.8, and the other arises by combining propositions 3.2.29

and 3.2.34. How do these atlases compare?

3.2.E Submersion theorem

We now have a very important result which let us produce lots of examples
of submanifolds of euclidean space out of smooth functions (in the sense of
definition 2.5.41). This result goes by many names, including the “regular level
set theorem,” the “preimage theorem” and the “submersion theorem.” We will

later generalize this result.

Theorem 3.2.36 (Submersion theorem). Suppose U is an open subset of R™ and
f: U — R™ is smooth and submersive. Then S = f~1(b) is a submanifold of U of

dimension m —n for any b € f(U).
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Proof. By replacing f with the function x — f(x) — b, we can assume without
loss of generality that b = 0. Fix a € S. We want to find a slice chart for S
containing p. We know that f is submersive at a, which means that the n x m
matrix f’(a) has a non-vanishing n x n minor. By permuting the coordinates (cf.
exercise 3.2.38), we can assume that it is the n x n minor on the far right of f'(a)
that does not vanish. In other words, we can assume without loss of generality
that

Om-n+i1fi(a) -+ Om-ni1fi(a)
det : : # 0. (3.2.37)
Omfn(a) e Omfn(a)
Consider the function ¢ : U — R™ such that, if x = (x1,...,%xm) € U, then

(P(X) = (Xh---)xm—n)ﬁ (X))- -')fn(x))-

Then
[ 0 0 0 |
0
e'(x)=1] 0 0 - 1 0 . 0
01f1(x) 02f1(x) -+ Onfi(x) Oniifi(x) -+ Omfi(x)
_61 fr(x) 02fn(x) -+ Onfn(x) Ont+1fn (x) --- amfn(x)_

In other words, the (m —n) x (m — n) submatrix on the top left is the identity
matrix, the (m —n) x n submatrix on the top right of ¢’(x) is all zeroes, and the
bottom n x m submatrix is precisely f’(x). This means that det ¢’(x) is equal, up
to sign, to the determinant of the n x n in the bottom right, ie, the n x n minor on
the far right of f’(x). We know from equation (3.2.37) that this minor is nonzero

when x = q, so ¢ is étale at a.
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Since f is smooth, so is @, so there exists an open neighborhood V of a such
that ¢|y is étale. By the inverse function theorem 2.4.15, we can replace V with a
smaller open neighborhood of a in order to further assume that o[y is injective.
Then exercise 3.2.3 tells us that (V, @) is a chart in the euclidean atlas which

contains a. Moreover,

SNV={xeV:fx)=0=KxeV:on n(x)==0m ni1(x) =0}
because @, n4j = fj forall j = 1,...,n. This shows that (V, @) is a slice chart
for S, and that S has dimension m — n at a in R™. O
Exercise 3.2.38. Suppose o is a permutation of the set {1,...,m}. Let fs : R™ —

R™ be the function which “permutes the coordinates of elements of R™ according
to 0,” ie,

fo(X1y.v 0y Xm) = (Xg(1)y -y Xo(m))-
Show that a subset S is a submanifold of R™ if and only if f(S) is a submanifold

of R™.

Exercise 3.2.39. Recall from exercises 3.2.4 and 3.2.6 that the n-sphere S™ is
defined by
St={xe R :|x, =1L

Use the submersion theorem to show that S™ is a submanifold of R™1.

Exercise 3.2.40. Let T be the torus inside R3 centered around the z-axis where
the distance from the origin to the center of the tube is R, the radius of the tube
ist,and 0 < r < R. Find a smooth submersive map f : U — R where U is an

open subset of R3 and
T= {(x,y,z) eu: f(x)y)z) =0k

Applying the submersion theorem 3.2.36, we conclude that T is a submanifold
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of R3.
Possible hint. See figure 3.2.41.

(xy,2)

Figure 3.2.41: A slice of the torus T from exercise 3.2.40 along a plane that is
perpendicular to the xy-plane and contains the z-axis.
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3.3 Smooth functions

We will now define what it means for a function between two manifolds to be
smooth. Roughly, the idea is that we know what smooth means on open subsets
of R™, and we just use charts to transfer the definition to arbitrary manifolds.
Recall that in chapter 2 we saw that the case when the codomain is R was the
most important. The same will be true here. You may find that the number
of definitions of “smooth” gets slightly out of hand; if you do, just remember
that, whenever multiple definitions of “smooth” make sense for the objects in

question, they’ll all agree.

3.3.A Smooth real-valued functions
Definition of smoothness for real-valued functions

Definition 3.3.1 (Smooth real-valued function). Let X be a manifold. A function
f: X — Ris said to be smooth if, for any chart (U, x) € Ax, the function f o x~! is
smooth.

x~! f
x(U) —uU —— R

There are two disconcerting things about this definition. First, there is theissue
that checking smoothness of a particular function seems next to impossible: the
maximal atlas Ax will have many, many charts, some that we may not even know
about, and the definition makes it seem like we need to check smoothness on all
of them! Thankfully, we don’t need to check on all possible charts. As soon as

we check smoothness on any atlas, even if it’s not maximal, we're done.

Lemma 3.3.2. Let X be a manifold and f : X — R a function. Suppose that there exists
an atlas A C Ax such that fox " is smooth for any (U, x) € A. Then f is smooth.
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Proof. Suppose (V,y) € Ax. For any (U, x) € A, we have maps as follows.

y(unv) HUQVH[R

wl
x(UNV)

Since (V,y) and (U,x) are both elements of the maximal atlas Ax, we know

that the transition function x o y~'

1

is smooth. Since (U,x) € A, we know by

assumption that f ox™' is smooth. Thus
foy~ = (fox")o(xoy™")

is a smooth functiony(UNV) — R.
Now note that, since A is an atlas, its charts cover all of X, so

U yunvy=yw).

(U,x)eA
Since f oy~ ! is smooth when restricted to each the open subset y(U N V) for all
(U, x) € A, we conclude that f o y~' must be smooth on all of y(V). O

The second disconcerting thing is the following. Suppose U C R™ is an open
subset and f: U — R is a function. On the one hand, we defined what it means
for f to be smooth back in definition 2.5.41. On the other hand, we can regard U
as an open submanifold of R™ (cf. exercise 3.2.9) and then definition 3.3.1 gives
us another definition of what it means for f to be smooth. A priori, it could be

that these definitions conflict. Thankfully, they do not.

Exercise 3.3.3. Suppose U C R™ is an open subset and f : U — R is a function.
Show that f is smooth in the sense of definition 2.5.41 if and only if it is smooth

in the sense of definition 3.3.1.

Possible hint. You might find lemma 3.3.2 useful.
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From here on out, we’ll use the fact that these two definitions of smoothness
coincide without comment.
Combining smooth real-valued functions

Definition 3.3.4. If X is a manifold, we write O(X) for the set of smooth functions
X = R.

Here is the standard set of stability properties we would want.
Exercise 3.3.5. (a) Show that O(X) is a vector space.
(b) If f, g € O(X), show that fg € O(X) also.
(c) If f € O(X) and f(x) # 0 for all x, show that 1/f € O(X) also.

Possible hint. You might decide to do part (d) first, and then use it to prove
(c). Or not, you could also just prove (c) directly.

(d) Suppose f € O(X), U is an open subset of R, g : U — R is smooth, and
f(X) C U. Show that go f € O(X).

Unimportant remark. if you've taken abstract algebra, you might be interested to
notice that the first two stability properties in exercise 3.3.5 show that O(X) is an
R-algebra (ie, that it is simultaneously a commutative ring and a vector space,

and that these two structures are “compatible” with each other).

Smooth approximations of characteristic functions of compact subsets x

Here is a generalization of exercise 1.4.39 which proves, roughly speaking, that
we can find a smooth approximation of the characteristic function of a compact
subset of a manifold. You may want to look at definition 0.7.24 for the definition

of compactness for topological spaces.
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Proposition 3.3.6. Suppose K is a compact subset of a manifold X and U is an open
neighborhood of K. Then there exists a smooth function f € O(X) such that 0 < f(x) <1
forallx € R, f(x) =1 forall x € K, and f(x) = 0 for all x ¢ L.

Proof. Suppose (V,x) is a chart containing some p € K. Recentering, we can
assume that x(p) = 0 (cf. remark 3.1.3). By shrinking V, we can assume that
V C U (cf. exercise 3.3.7). Then x(V) is an open neighborhood of 0 = x(p) € R™,
so there exists € > O such that B(0, €) C x(V). Lety : R™ — Rbe abump function
supported on B(0, €) (cf. exercise 2.5.44). Then o x is a smooth function on V
(cf. exercise 3.3.7) which is supported entirely inside V (namely, on x~'(B(0, €))),
and is zero everywhere else on V. Define f, : X — R by

Pox ifxeV
fp(x):
0 if x € V.

Then f,, is smooth (cf. exercise 3.3.7), and it is strictly positive on an open
neighborhood V,, of p contained inside U.

We can construct such a function f,, for every p € K. Since K is compact,
there exist finitely many p1,...,pn € Ksuch that K € V,,, U---UV,, . Thus
fp, + -+ fp, is strictly positive on K, and zero outside U. Since K is compact,
there exists & > 0 such that f,,, +--- 4+ f, > 6 on K (cf. exercise 3.3.7). Let g
be a bridging function such that g(x) = 1 for x > § and g(x) = 0 for x < 0 (cf.
example 1.4.38), and then set f = go (fp, +--- +fp, ). O

Exercise 3.3.7. Fill in the missing details in the above proof.

(a) Prove that we can “shrink V in order to assume that V C U.”

(b) Modify the bump function of exercise 2.5.44 so that it has support B(0, €).
(c) Explain why { o x is a smooth function V — R.

(d) Explain why f}, is a smooth function X — R.
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(e) If h: K — Ris a continuous function such that h(x) > 0 for all x € K, show
that there exists & > 0 such that h(x) > & for all x.

Possible hint. Let & = inf{h(x) : x € K} and recall the extreme value theorem.

3.3.B Smooth functions between manifolds
Here is a definition that may look a bit terrifying at first.

Definition 3.3.8 (Smoothness). Suppose X and Y are manifolds and f : X — Y
is a function. Then f is smooth if, for every chart (V,y) € Ay and every chart
(U,x) € Ax such that f(U) C V, the functionyofox~' : x(U) — y(V) is smooth.

X y
ofo =1

x(U) 25 y(V)

R™ R™

Once again, we don’t need to check all possible charts. The statement is a bit

complicated, but it’s exactly the statement you might hope for.

Exercise 3.3.9. Suppose X and Y are manifolds and f : X — Y is a function.
Suppose further that there exists an atlas A C Ay such that, for every (V,y) € A,
there exists an atlas A’ C A1 (v, such that for every (U,x) € A’, the function
yofox ' :x(U) — y(V)is smooth. Show that f is smooth.

We should also note that we haven’t redefined the word “smooth” in any

conflicting ways. More precisely, we have the following two exercises.
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3.3 Smooth functions

Exercise 3.3.10. If U C R™ is an open subset and f : U — R™ is a function, show
that f is smooth in the sense of definition 2.5.41 if and only if it is smooth in the

sense of definition 3.3.8.

Exercise 3.3.11. Show that a function f : X — R is smooth in the sense of

definition 3.3.1 if and only if it is smooth in the sense of definition 3.3.8.

From here on out, we'll use the fact that all of these definitions of smoothness
coincide without comment.

Here is an important example of a smooth function.

Exercise 3.3.12. Let f : R — S! be the function f(t) = (cos(t),sin(t)). Show that

f is smooth.

Combining smooth maps

It doesn’t make sense to add or multiply maps that take values in a manifold.

The only thing that makes sense is composition, and indeed, we can compose.

Exercise 3.3.13. Suppose X, Y, Z are all manifoldsand f : X - Yandg:Y — Z

are smooth. Show that g o f is also smooth.

Reduction to smooth real-valued functions

Finally, we show that the case when the codomain is R is the most important

case. We do this in two steps.

Proposition 3.3.14. Suppose X is a manifold and f : X — R™ is a function. Then f is

smooth if and only if the component functions f; = 7t; o f are smooth foralli=1,...,n.

Proof. The single chart (R™,id) is a sub-atlas of the euclidean atlas on R™, so
exercise 3.3.9 says that f is smooth if and only if, for every (U,x) € Ax, the

1

composite f o x~' : x(U) — R™ is smooth. This is a function from an open

subset of euclidean space into euclidean space, so we know from the definition
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3 Manifolds

1

of smoothness in chapter 2 that f o x™' is smooth if and only if its component

functions 7; o (f o x ') are smooth for all i. But

mo(fox ) =(mof)ox ' =fiox !,

1

and f; o x™' is smooth for all (U,x) € Ax if and only if f; is smooth, again by

exercise 3.3.9. O

Proposition 3.3.15. Suppose f : X — Y is a function between two manifolds. Then the

following are equivalent.
(a) fis smooth.

(b) For every open subset V C Y and every smooth function g : V — R, the composite
g o flg-1(v) is a smooth function f=1(V) = R

Proof. One direction follows immediately from exercise 3.3.13. Conversely, sup-
pose f has the property described in (b). Choose a chart (V,y) € Ay of dimen-
sion n. By assumption, y; o fl¢-1(y/ is a smooth function f~1(V) — R for all
i=1,...,n. By proposition 3.3.14, this means that y o f|¢-1y/) is smooth. Since
this is true for all charts (V,y) € Ay, we conclude that f is smooth. O

Unimportant remark. Suppose f : X — Y is a smooth function between manifolds.
For any g € O(Y), we have go f € O(X). Thus g — g o f defines a function
f1:0(Y) = O(X), which is actually a homomorphism of R-algebras.

3.3.C Paths

Incomplete. Gist: we can do basically all we did in section 2.5.E on manifolds,

too.
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3.3 Smooth functions

3.3.D Diffeomorphisms

Diffeomorphisms are how we formalize the idea that two manifolds are “basically

the same.”

Definition 3.3.16 (Diffeomorphism). Suppose X and Y are manifolds. A function
f : X — Y is a diffeomorphism if it is smooth, bijective, and the inverse function
f~1:Y — Xis also smooth. If there exists a diffeomorphism f : X — Y, then X
and Y are diffeomorphic.

Exercise 3.3.17. Regard R as a manifold in two different ways: once with the
euclidean atlas, and next with the maximal atlas containing (R, x x3). Show

that these two manifolds are diffeomorphic.

Exercise 3.3.18. If X is a manifold and (U, x) € Ax, prove that x : U — x(U) is a

diffeomorphism.

Definition 3.3.19 (Local diffeomorphism). Suppose X and Y are manifolds. A
function f : X — Y is a local diffeomorphism if, for every p € X, there exists an
open neighborhood U of p such that f(U) is an open subset of Y and f|y is a
diffeomorphism U — f(U).

Exercise 3.3.20. Consider the smooth function f : R — S! given by f(t) =

(cos(t),sin(t)) from exercise 3.3.12. Show that f is a local diffeomorphism.

Exercise 3.3.21. Show that local diffeomorphisms are smooth and open.
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4 Tangent bundie

4.1 Tangent space

Throughout this section, we let X denote a manifold and p € X a point. We also
let n := dim,, (X).

4.1.A Curves based at a point

Definition 4.1.1. A curve in X based at p is a smooth functiony : (—e, €) — X for
some € > 0 such that y(0) = p.

Suppose that (U, x) € Ax is a chart containing p and thaty : (—e,e) - Risa
curve based at p. Since U is an open subset of X and vy is continuous, the preimage
v~ (U) is an open subset of (—¢, €) containing 0, so there exists 0 < ¢’ < € such
that the image of the smaller interval (—e’, €) is entirely contained inside U. We

let x o y denote the composite function
(—e’ye!) —— U —— R™.

We can then take its derivative at 0 as in chapter 2. This derivative d(x o y)¢ is a

linear map R — R™, so its matrix representation

(xo¥)'(0)

is a column vector in R™.
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4 Tangent bundle

Definition 4.1.2. Two curves y1,7Y; in X based at p are equivalent if d(x oy1)o =
d(x oy2)o for every chart (U, x) € Ax containing p.

As usual, the first point of order is to check that we don’t need to check all

possible charts.

Exercise 4.1.3. Show that, if y1,y, are two curves in X based at p and there exists

a chart (U, x) € Ax containing p and

d(xovy1)o = d(xov2)o,

then v is equivalent to ;.

Definition 4.1.4. We define the tangent space of X at p, denoted T, X, to be the set of
equivalence classes of curves in X based at p. Elements of T, X are called tangent
vectors at p. If vy is a curve based at p, we will write v, for the corresponding

tangent vector in T, X.

4.1.B Vector space structure

We will now put a vector space structure on the tangent space T, X. There are a
lot of details involved in the process, so we begin with a high-level overview. If
we choose a chart (U, x) € Ax containing p, there is a bijection o : T, X — R™ (cf.
lemma 4.1.5). This means that we can define vector space operations on T, X by
“pulling back along 0.” More precisely, this mean the following: givenv € T, X
and A € R, we define

A= 0" (Ao(v)),

and given vy, v, € T, X, we define
Vi +v2 =0 ' (o(v1) + 0(v2)).

We can then show that these operations define the structure of a vector space on

T,V by showing that all of the vector space axioms are satisfied (cf. lemma 4.1.7).

230



4.1 Tangent space

The final step is to show that these operations do not depend on the choice of
chart (U, x) (cf. exercise 4.1.11). Thus there is a canonical, coordinate-free, vector

space structure on T, X.

Lemma 4.1.5. Suppose (U,x) € Ax is a chart containing p. There is a well-defined
bijection o : ToX — R™ given by v, — [d(x o y)o] = d(x oy)o(1).

Proof. The fact that o is well-defined follows immediately from definition 4.1.2.
For a vector w € R™, define ., : (—e, e) = X by

Yw(t) =x7 1 (x(p) + tw)

where € is chosen to be small enough that x(p) + tw € x(U) for all t € (—e, €)
(cf. exercise 4.1.6). Then v,,(0) = x~ ' (x(p)) = P, 50 V. is a curve in X based at
p. Notice that

(x 0w (t) = x(x"" (x(p) + tw)) = x(p) + tw

so [d(x o Yw)ol = w (cf. exercise 4.1.6). It follows from this that w — v, is

inverse to o, proving that o is bijective (cf. exercise 4.1.6). ]

Exercise 4.1.6. (a) Explain why there mustexist e > 0 such that x(p)+tw € x(U)
forallt € (—e,€).

(b) Explain why [d(x o y)o] = w.
(c) Explain how it follows from (b) that w — v, is inverse to o.

Lemma 4.1.7. Suppose (U,x) € Ax is a chart containing p and o : ToX — R™ is the
bijection of lemma 4.1.5. Then T, X, equipped with the addition and scalar multiplication
operations obtained by pulling back along o, is a vector space. The zero element is the

equivalence class of the constant curve at p.
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4 Tangent bundle

Proof. This follows immediately from the fact that R™ is a vector space and that
o is bijective, but writing out all of the details is fairly tedious. To explain the

idea, let’s show that vector addition is commutative. For vi,v> € T, X, we have

vi+va =0 '(o(vi) +o(v2))
=0 (o(v2) +o(v1))

=V +Vq

where we used the definition of addition in T, X on the first and last steps, and
the fact that addition in R™ is commutative for the middle step.

Let y denote the constant curve y(t) = p for all t. Then x o p is also a constant
function which always takes the value x(p), so its derivative is 0. Thus, for any

v € T, X, we have

V+vy =0 (o) + o(vy))
=0 (o(v) +0)
=0 (o(v))
— v,

proving that v, is the zero element of T, X.
The rest of the proof is left to you (cf. exercise 4.1.8) O

Exercise 4.1.8. Check all of the other axioms that need to be checked to ensure

that T, X is a vector space.!

Exercise 4.1.9. Suppose (U, x) € Ax is a chart containing p and o : T,X — R™ is
the bijection of lemma 4.1.5. If T, X is equipped with the vector space operations
obtained by pulling back along o, then o : T,X — R™ is a linear map. Therefore,

it is an isomorphism of vector spaces, and dim T, X = n.

'During a class I took with him, George Bergman once said something along the following lines:
“If you're sure you can write the details of a proof, you probably don’t need to. But if you're not
sure you can formalize the details, you need to do it.” I encourage you to apply this principle
for exercise 4.1.8.
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Lemma 4.1.10. Suppose (U, x), (U, x") € Ax are both charts containing p and that
0,0’ : ToX — R™ are the bijections from lemma 4.1.5 corresponding to (U, x), (U’,x"),
respectively. Then o’ = d(x’ o X)y(p) © 0, where x’ o x denotes the transition map (cf.
definition 3.1.4).

T,X —2 R™

\ Jd(X/Oxi‘l )X(p]
o’ RT

Proof. Lety be a curve in X based at p. Then
x' oy =x"o(x"ox)oy=(x"0x)o(xo0Y),
so the chain rule 2.3.3 says that

d(x" ov)o = d(x" 0 X)(xoy)(0) © d(x 0 ¥)o = d(x" 0 X)x(p) © d(x 0 V)o.

Evaluating at 1, we find that

o' (vy) = d(x 0 ¥)o(1) = d(x" o X)x(py(d(x 0¥)o(1)) = d(x” 0 X)x(p)(T(Vy)).

Since this is true for all v, we conclude that ¢’ = d(x’ o )y () © 0. O

p)

Exercise 4.1.11. Suppose (U, x), (U’,x") € Ax are both charts containing p and
that 0,0’ : T,X — R™ are the bijections from lemma 4.1.5 corresponding to
(U,x), (U’,x"), respectively. Show that the vector space operations on T, X de-
fined by pulling back along o are the same as those defined by pulling back along

o’

Possible hint. Use lemma 4.1.10. The key is that d(x’ o x ! )x(

linear map.

) is an invertible

This completes our construction of a vector space structure on T,X. Notice

that T, X is an example of a finite dimensional vector space that does not come
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4 Tangent bundle

equipped with any canonical basis! More precisely, this means the following.
If we choose a chart (U,x) € Ax containing p, the bijection o : T,X — R™
of lemma 4.1.5 is an isomorphism of vector spaces (cf. exercise 4.1.9), so
o '(e1),...,0 (en) is a basis of TpX. But then, if we choose a different chart
(U’,x") € Ax containing p and ¢ is the corresponding isomorphism T, X — R™,
then o/~ '(e1),...,0" (en) will in general be a different basis of T,X, even
though the vector space structures defined by pulling back along o and ¢’ are
the same! So, for a general manifold X and point p, since there’s no “canonical”
choice of a chart containing p, there is also no “canonical” choice of a basis on
T, X. I'strongly encourage you to work through the following exercise to make

sense of this.

Exercise 4.1.12. Consider the unit circle S!, regarded manifold using the charts
(U,x) and (U’,x’) defined in exercise 3.2.4. Any point p € S' can be written as

(cos 0, sin 0) for some 6 € R.

(a) Observe thaty : R — S' given by
v(t) = (cos(0 + t),sin(0 + t))

is a curve in S' based at p. Explain why v, is a basis for T,,S'.

(b) Suppose p € U and let 0 : T,S' — R be the isomorphism of lemma 4.1.5
corresponding to the chart (U, x). Find A € R such that o(Av,) = 1.

(c) Suppose p € U’ and let ¢’ : T,S" — R be the isomorphism of lemma 4.1.5
corresponding to the chart (U’,x’). Find A" € R such that ¢/(A"v, ) = 1.

So, if p € U N U’, we see that there are three possible bases we might choose on
T,S! (vy, or Avy, or A'vy), none of these is any more “canonical” than another.

This is what is meant when we say that T, S! has no canonical choice of basis.

Remark 4.1.13. Suppose U is an open subset of X containing p regarded as
an open submanifold (cf. exercise 3.2.9). A curve vy in U based at p is also
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4.1 Tangent space

automatically a curve in X, which means there is a natural “inclusion” map
ToU — T,X given by v, — v,. But we can “shrink” curves in X to curves in
U without changing their equivalence class, so T, U — T, X is actually bijective.
Moreover, if we choose a chart in Ay containing p, we can use this chart to
define the vector space structure on both T, U and T, X, so T, U — T, Xis actually
an isomorphism of vector spaces. Since this isomorphism is tautological, we

sometimes write T, U = T, X.

Remark 4.1.14. There is one situation where we do have a canonical choice of
a chart: R™. Namely, the identity map id : R™ — R™ defines a chart. If y is
a curve in R™ based at a point p, then d(id o y)o = dyo, so the isomorphism
o : T,R™ — R™ is given by o(vy) = [dyo]l. We will call this the “canonical
isomorphism” T,R™ — R™, which we sometimes also write as T,R™ = R™. But
this is fairly abusive and it’s worth remembering that T,R™ is not literally equal
to R™. The former is equivalence classes of curves, the latter is column vectors,

and the relationship between the two is given by taking the derivative at 0.

4.1.C Derivations x

There is another perspective on tangent vectors which is often useful, though it

is decidedly less geometric at first glance. It begins with the following definition.

Definition 4.1.15. Let X be a manifold and p € X a point. A derivation on X based
at p is a linear function 0 : O(X) — R such that

d(fg) = a(f)g(p) +f(p)a(g).

We let Dery, (X) denote the set of all derivations on X based at p.
The following is not very hard to prove.
Exercise 4.1.16. Show that Der, (X) is a vector space.

It turns out that T, X and Der, (X) are isomorphic, as we will soon prove.
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4 Tangent bundle

Remark 4.1.17. Sometimes, people define the tangent space to be Der,, (X). It’s
not very geometric, but it at least makes the vector space operations on the
tangent space fairly obvious (cf. exercise 4.1.16); compare this with our geometric
definition of the tangent space in terms of curves, where we had to do a lot of
work to regard the tangent space as a vector space (cf. section 4.1.B). That said,
even if one defines the tangent space to be Dery, (X), it’s not clear how to produce
examples of derivations, or to prove that Der, (X) is finite dimensional. One way
or another, one needs to show that derivations are somehow linked to curves.

This is what we do next.

Definition 4.1.18. Suppose v is a curve in X based at p. If f : X — Ris a
smooth function, then f oy is a single variable function (—e, ¢) — R. We define
0y : O(X) = Rby

dy(f) = (foy)'(0).

Lemma 4.1.19. Ify is a curve in X based at p, the function 9 is a derivation.

Proof. Suppose f,g € O(X) and A € R. To see that 9, is linear, we use the sum

and scalar multiple rules from exercises 1.2.1 and 1.2.2.

dy(f+Ag) = ((f +2Ag) 0v)'(0)

= ((fov) +Agov))'(0)
= (fov)'(0) +Al(g o) '(0)
0

= 0y(f) +A0y(g)

To see that it is a derivation, we use the single variable product rule 1.2.4.

dy(fg) = (fgov)'(0)

= ((foy)(gov))(0)

= (foy)'(0)(govy)(0) + (foy)(0)(govy)(0)
3y (f)g(p) + f(p)ay(g)
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4.2 Pushforward

This completes the proof. O
Lemma 4.1.20. If v and v, are equivalent curves in X based at p, then 9, = 0,.

Proof. Choose a chart (U, x) € Ax containing p and let y be a curve in X based

atp. Then
3,(f) = (foy)'(0)

= d(foy)o(T)
= d(foxf1 oxovy)o(1)

=d(fox™! )x(p) (d(x0¥)o(T1))

where we used the chain rule 2.3.3 at the last step. Since 9 (f) only depends on

d(xov)o, we see that equivalent curves must give rise to the same derivation. [
Theorem 4.1.21. The function T, X — Dery, (X) given by v, +— 0 is an isomorphism.

Definition 4.1.22. If v € T, X, we let 9, denote the corresponding element in
Derp, (X).

4.2 Pushforward

4.2.A Definition of the pushforward

Let f : X — Y be a smooth map of manifolds and p € X a point. Given a curve y
in X based at p, observe that f oy is a curve in Y based at f(p).

Lemma 4.2.1. Let f : X — Y be a smooth map of manifolds and p € X a point. If v4
and vy are equivalent curves in X based at p, then f oy and f oy, are equivalent curves
in'Y based at f(p).

This allows us to make the following definition. We will shortly see that this

is the “ultimate” generalization of derivatives.
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Definition 4.2.2. Let f : X — Y be a smooth map of manifolds and p € X a
point. If y is a curve in X based at p, we define its pushforward f. p(vy) € Te(p)Y
to be the equivalence class of the curve f oy. This defines the pushforward map
fep : TpX — Tf(p)Y. If p is clear from context, we also write just f, instead of

fup-

Proposition 4.2.3. Let f : X — Y be a smooth map of manifolds and p € X a point. The
pushforward map . : T, X — Tg(p,)Y is linear.

The following result states that the pushforward generalizes the derivative at

a point.

Proposition 4.2.4. Let U is an open subset of R™, p € W is a point, and f : U — R™
is a smooth map. Then, using the identifications of remarks 4.1.13 and 4.1.14, we have
£, = dfp.

TyU =——— T,R™ —— R™
f*l ldfp
Trp)R™ R

Proof. Let o denote the isomorphisms T,R™ — R™ and T,R™ — R™ of re-
mark 4.1.14. Suppose vy is a curve in U based at p. Then

(dfp 0 0)(vy) = dfp(dyo(1)) = (dfp o dyo)(1) = d(f o v)o(1),

where we used the chain rule 2.3.3 for the final step. On the other hand, we also

have

(oo f*)(vy) = U(Vfoy) =d(fov)o- 0

Remark 4.2.5. Sometimes, the map f, : T,X — T,Y is denoted df,, similar to
the notation we were using in chapter 2. This creates no conflicts, thanks to

proposition 4.2.4.

In light of proposition 4.2.4, the following is a generalization of the chain rule.
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4.2 Pushforward

Proposition 4.2.6. Suppose f : X — Y and g : Y — Z are smooth maps of manifolds,
and p € Xis a point. Then g of, = (go f)..

Ty X — Tep

Nk,

Proof. 1f vy is a curve in X based at p, then
9*(f*(vy)) = g*(Vfoy) = Vgofoy = (9 © f)*(vy)- O

This proof looks absurdly easy, and that’s because it is. You might be wonder-
ing why the proof of this generalization of the chain rule looks so easy, while
the proof of the chain rule in chapter 2 was significantly more work. It's because
the pushforward is so abstractly defined that it’s basically useless and uncom-
putable until we know that it actually generalizes the derivative from chapter 2
and therefore can be computed using techniques from chapter 2. This was the
content of proposition 4.2.4, and notice that we used the chain rule 2.3.3 to prove

proposition 4.2.4.

4.2.B Rank of a smooth map

In light of proposition 4.2.4, the following generalizes definition 2.3.38.

Definition 4.2.7. Suppose f : X — Y is a smooth map between manifolds and
p € Xis a point. The rank of the linear map f. : T, X — T¢(;,)Y is also called the
rank of f at p, denoted rank, (f). Note that rank,, (f) < mm{dlmp( )y dim () (V).

e If rank, (f) = dim(X), then we say that f is immsersive at p. This is

equivalent to requiring that f, is an injective map T,X — T, Y.

o If rank; (f) = dimg(p,)(Y), then we say that f is submersive at p. This is

equivalent to requiring that f, is a surjective map T, X — T, Y.
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4 Tangent bundle
o If rank, (f) = dimy, (X) = dim¢(;,)(Y), then we say that f is étale at p. This is
equivalent to requiring that f, is an isomorphism T, X — T, Y.

e If rank, (f) = min{dim; (X),dim¢(,)(Y)}, then we say that p is a regular
point of f.

e Ifrank; (f) < min{dimy, (X), dim¢(,)(Y)}, then we say that p is a critical point
of f.

Definition 4.2.8. Suppose f : X — Y is a smooth map between manifolds.
o If f is immersive at every p € X, then f is an immersion.
e If f is submersive at every p € X, then f is a submersion.
o if fis étale at every p € X, then f is étale.

Exercise 4.2.9. Find the critical points of the map f : S — R? given by f(x,y,z) =
(xy, z).
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Solution to exercise 1.3.17 part (a). Suppose f’ > 0 and x < y in I. By the mean

value theorem 1.3.3, there exists ¢ between x and y such that

fly) —f(x)
Yy—x

=f'(c) > 0.

Since y — x > 0, this means that f(y) > f(x), proving that f is increasing.
Conversely, suppose f is increasing. Then for any a € I and h > 0, we have
f(a +h) > f(a), which means that

fla+h)—"f(a) _
h =

for all h > 0. Thus

f(q) = hlifg+ fla+h)—f(a) <

=
\

proving that f’ > 0.

Solution to exercise 2.3.1. Observe that
[(f+g)(at+h)—(f+g)(a)—(dfa+dga)(h)| = [f(at+h)—f(a)—dfq(h)+g(at+h)—g(a)—dga(h)| < [f(at+h)—f(a)—df,

Both[f(a+h)—f(a)—dfq(h)|and [g(a+h)—g(a)—dgq(h)lare o(|h|) by definition
of the derivative, so it follows from exercises 0.1.6 and 0.1.7 that |(f + g)(a+h) —
(f+g)(a) — (dfq + dgq)(h)|is o(|h|). Thus dfq + dgq = d(f + g)q.
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Solution to exercise 2.4.23. This is just unwinding definitions. Suppose f is
open. Fix a point a € U and let V be an open neighborhood of a in U. Since
f is open, f(V) is open, so f(a) must be an interior point of f(V). Conversely,
suppose f is locally surjective at every point in U. Let V be an open subset of U.
If b € f(V), there is an a € V such that f(a) = b. But f is locally surjective at a,
so f(a) = b is an interior point of f(V). Thus every b € f(V) is an interior point
of f(V), so f(V) is open.

Solution to exercise 3.2.12. Let 7t: B — M be the map 7t(x,y) = [x,y]. To show
that U = {[x,y] € M : x # 0,1} is open, we use the definition of the quotient
topology example 0.7.7, which tells us that U is an open subset of M precisely

when 7t~ "(U) is an open subset of B. But

is an open subset of B, so U is open in M.

The facts that ¢ : U — R? is well-defined and injective follow immediately
from the observation that every equivalence class in U has exactly one element.
To see that ¢ is continuous, suppose W is an open subset of RZ2. We want
to show that @~ (W) is open in U, ie, that 7~ (@~ (W)) is open in B. But
(@' (W)) = B° N W is an intersection of two open subsets, so it is also open.

To see that ¢ is open, suppose W is an open subset of U. We want to show
that (W) is an open subset of RZ. But notice that (W) = = 1(W), and we
know that 7w~ ' (W) is open in B by the definition of open subsets in the quotient
topology. Moreover, (W) C B°, so ¢(W) is an open subset of B°. Since B° is

open in R?, we conclude that ¢ (W) is open in R2.

Solution to exercise 3.2.13. Let 7w : B — M be the map 7t(x,y) = [x,y] again.
Observe that 71 (V) = {(x,y) € B : x # 1/2}is an open subset of B (even though
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it is not an open subset of R?), so by definition of the quotient topology, V is an
open subset of M.

Let us check that \ is well-defined. Most equivalence classes have just one
element, and 1 is clearly well-defined on those equivalence classes. Equivalence
classes with two points are of the form [0,y] = [1,1 —y] for some y € (0,1).
Observe that

P([1,1T—yl) =(0,1T—(1—-y)) = (0,y) = ([0, y]),

which shows that 1 is well-defined on the equivalence classes with two elements
as well. The verification that 1 is continuous, injective, and open will be left to

the reader.

Solution to exercise 3.2.14. Observe that the transition function 1 o @ ! from
(U, @) to (V, ) is the composite

eUNV) 2L unv Y5 yunv)
given by

(x,y) ifx<1/2

(1|)0(p1)(x,y)‘~l)([xyy]){ .
(x—1,1—y) ifx>1/2

which is clearly smooth, and

0
] ifx <1/2
1

(Woo N (xy) =< E

0
] ifx >1/2
-
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A Selected solutions

which shows that 1 o @~ is étale. Thus the two charts are compatible.
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chain rule, 47, 114

chart, 193

C®, see smooth

circle, 200, 234
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cofactor expansion, 22
compact, 34

compatibile, 194

component function, 116
connected, 135

constant function, 38, 63, 134
continuous, 31

continuously differentiable, 83, 152
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critical
critical point, 129
critical value, 129
critical point, 132, 240
critical locus, 131
curve, 229

cusp, 131

Darboux function, see intermediate
value property

Darboux’s theorem, 74
derivation, 235
derivative, 60, 132

derivative at a point, 36
diffeomorphism, 94, 95, 227
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difference quotient, 36
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dimension
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directional derivative, 119
discontinuity
jump discontinuity, 74

removable discontinuity, 73
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of norms, 15, 16
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extreme value theorem, see extremum
extremum
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extreme value theorem, 63, 76
interior extremum theorem, 56,
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local extremum, 55, 56
local maximum, 55
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fundamental theorem of calculus, 100
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GL(V), 20, 28
gradient, 124

Hausdorff, 33
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immersion, 240

immersive, 129, 239

infinitely differentiable, see smooth

“infinitely flat” function, 99

“infinitely flat” functions, 95
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intermediate value property, 73, 74

intermediate value theorem, 73, 94

interval, 60

inverse function, 47, 85
jacobian matrix, 127

L2 norm, 16, 22

L'Hopital’s rule, 44, 96

linear approximation, 40

L* norm, see max norm

local diffeomorphism, see diffeomor-
phism, local diffeomorphism
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manifold, 198

max norm, 15, 22
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mixed partials, 157
equality of mixed partials, 157
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Mobius strip, 204
monotone, 66
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strictly increasing, 66, 94
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multi-index, 161

multinomial, 162

n-sphere, 202
node, 131

norm, 14

open
open map, 32, 67, 193
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open cover, 34
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operator norm, 23, 115

P!, see projective line
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partial derivative, 119
power rule, 37,47, 57,78

power series, 57
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product
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product topology, 30
product rule, 45, 118, 121
projection map, 18, 116
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pushforward, 238

quotient rule, 46, 119, 121
quotient space, 30

rank
of a differentiable function, 128
of a linear map, 21
of a matrix, 20
of a smooth map, 239
regular
regular point, 129
regular value, 129
regular point, 240
remainder, 42, 90
representation
of a linear map, 20
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standard matrix representation,
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orem
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saddle, 122

scalar multiples rule, 45, 114

o-compact, 34

smooth, 93, 170, 220, 224

smooth manifold, see manifold

S™, see n-sphere

standard basis, 18

standard matrix representation, see
representation, standard ma-
trix representation

subcover, see open cover, subcover

submersion, 240

submersive, 129, 239

submultiplicativity, 26

subspace, 30

subspace topology, 30
sum rule, 45, 114
support, 98

tangent space, 230
topological space, 29, 192
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