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Smörg̊asbord

Arithmetic geometry is an active area of mathematical research with a rich
history. Today, I’d like to give you a taste of the field with a smörg̊asbord
of motivating examples.
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Pythagorean triples

The Pythagorean theorem

c
b

a

If a and b are the lengths of the legs of a right triangle and c is the length
of the hypotenuse, then

a2 + b2 = c2.
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Pythagorean triples

Pythagorean triples

Are there any right triangles all of whose sides have integer lengths?

In other words, are there positive integers (a, b, c) satisfying a2 + b2 = c2?

Yes! (3, 4, 5) is an example.

5 4

3

Lists of integers like this are called Pythagorean triples.

Are there any other Pythagorean triples?
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Pythagorean triples

Yes, we could multiply (3, 4, 5) by 2 to get (6, 8, 10),

which is also a
Pythagorean triple:

62 + 82 = 36 + 64 = 100 = 102.

5 4

3

10 8

6

15 12

9

We could also have multiplied by 3, or 4, or...

Are there any other Pythagorean triples?
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Pythagorean triples

Sure, there’s (12, 5, 13).

13
5

12

As before, its integer multiples (like (24, 10, 26), (36, 15, 39),...) are also
Pythagorean triples.

Are there any others?

Is there a systematic way of finding all of the Pythagorean triples?

Yes! Let’s see how.
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Pythagorean triples

Reduced triples

Before proceeding, let’s say that a Pythagorean triple (a, b, c) is reduced if
a, b and c have no common factors.

For example, (3, 4, 5) is reduced, but (6, 8, 10) is not since 2 is a common
factor of 6, 8 and 10.
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Pythagorean triples

Pythagorean triples

Reduced triples

Every Pythagorean triple can be found by scaling up a reduced triple.

So, if we can find the reduced triples, we can find the rest.

Our goal will be to systematically list the reduced triples.
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Pythagorean triples

Rational numbers

A rational number is a number that can be written as an integer over
another integer.

For example,
1

3
,
−5

173
, and

4

1
= 4

are all rational numbers.

If I add, subtract, multiply, or divide two rational numbers, the result will
still be a rational number.

a

b
+

c

d
=

ad + bc

bd
and

a

b
· c

d
=

ac

bd
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Pythagorean triples

Irrational numbers

Not all numbers are rational.

Let’s think about the right triangle with leg lengths 1.

√
2 1

1

The Pythagorean theorem tells us that the hypotenuse has length
√

2.

It has been known for thousands of years that this number is irrational. A
classical proof by contradiction can be found in Euclid’s Elements.
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Pythagorean triples

Back to finding a systematic way of listing reduced triples...

We’ll start with a reduced Pythagorean triple (a, b, c).

Let’s take the Pythagorean theorem

a2 + b2 = c2

and divide through by c2. (
a

c

)2

+

(
b

c

)2

= 1.

In other words, x = a/c and y = b/c are rational numbers satisfying

x2 + y 2 = 1.
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Pythagorean triples

The equation x2 + y 2 = 1 defines a
circle of radius 1.

If a, b, c are all positive, so are
x = a/c and y = b/c ...

...so (x , y) is a rational point on the
circle in the first quadrant.

−1 1

−1

1
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Pythagorean triples

Pythagorean triples

Reduced

Rational points
on the circle in

the first quadrant

We started with a reduced Pythagorean triple and found a rational point
on the circle x2 + y 2 = 1 inside the first quadrant.
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Pythagorean triples

Geometrically, here’s what we did.

a

b

c
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a

b

c
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Pythagorean triples
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Pythagorean triples

Pythagorean triples

Reduced

Rational points
on the circle in

the first quadrant

We can also go the other way: given any rational point on the circle
x2 + y 2 = 1 in the first quadrant, we can get a reduced Pythagorean triple.

Let’s see how!
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Pythagorean triples

Least common denominator

The least common denominator of two fractions is the smallest number
that is a multiple of both of the denominators.

It’s the smallest denominator that makes it easy to add the fractions.

For example,
1

4
+

5

6
=

3

12
+

10

12
=

13

12
,

and the least common denominator of 1/4 and 5/6 is 12.
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Pythagorean triples

Suppose x and y are positive rational numbers such that

x2 + y 2 = 1.

We write them over the least common denominator as x = a/c and
y = b/c , (

a

c

)2

+

(
b

c

)2

= 1,

and then clear denominators:

a2 + b2 = c2.

Since c is the least common denominator, (a, b, c) is a reduced
Pythagorean triple.
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Pythagorean triples

Geometrically, here’s what we did!

(x , y)
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1

a/c

b/c

a

b

c
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Pythagorean triples

Pythagorean triples

Reduced

Rational points
on the circle in

the first quadrant

So, finding reduced Pythagorean triples is the same as finding rational
points on the circle x2 + y 2 = 1 inside the first quadrant.

Is there a systematic way to list these rational points?

Let’s see!
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Pythagorean triples

The point (0, 1) is on the circle.

Let’s say that (x0, y0) is another
rational point on the circle.

Draw a line through (0, 1) and
(x0, y0).

−1 1

−1

1
(0, 1)
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Pythagorean triples

This line has equation

y =

(
y0 − 1

x0

)
︸ ︷︷ ︸

r

x + 1.

Notice that the slope r is a rational
number.

−1 1

−1

1
(0, 1)

(x0, y0)
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Pythagorean triples

If (x0, y0) is in the first quadrant, the
slope r is between −1 and 0.

−1 1

−1

1
(0, 1)

(x0, y0)
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Pythagorean triples

Pythagorean triples

Reduced

Rational points
on the circle in

the first quadrant

Rational numbers
between −1 and 0
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Pythagorean triples

Can we go the other way?

Suppose we start with an arbitrary
rational slope r between −1 and 0...

... and we draw the line of slope r
passing through (0, 1).

−1 1

−1

1
(0, 1)
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Pythagorean triples

This line will intersect the circle in
another point inside the first
quadrant.

Will that point have rational
coordinates?
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Pythagorean triples

Let’s find the coordinates of the point of intersection.

In other words, we want to solve the following system of equations.{
x2 + y 2 = 1

y = rx + 1

Substituting y = rx + 1 into x2 + y 2 = 1, we find

x2 + (rx + 1)2 = 1.
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Pythagorean triples

The equation x2 + (rx + 1)2 = 1...

is quadratic, so it has two roots,

has rational coefficients,

and has the rational number x = 0 as a root.

Fact

If we have a polynomial with rational coefficients and we know that all but
possibly one of its roots are rational, then the last root must be rational
too.

This means that the second root of x2 + (rx + 1)2 = 1 is also rational.

Since y = rx + 1, we know that y is rational when x is rational.

So the second point of intersection is a rational point!
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Pythagorean triples

We can find the coordinates of the second point of intersection explicitly.

x2 + (rx + 1)2 = 1

x2 + (r 2x2 + 2rx + 1) = 1

(1 + r 2)x2 + 2rx = 0

x((1 + r 2)x + 2r) = 0

x =

0
−2r

1 + r 2

Note that x = 0 corresponds to the point (0, 1), so we want x =
−2r

1 + r 2
.
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Pythagorean triples

Plugging in x =
−2r

1 + r 2
, we have

y = rx + 1

= r

(
−2r

1 + r 2

)
+ 1

=
−2r 2

1 + r 2
+

1 + r 2

1 + r 2

=
1 − r 2

1 + r 2
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Pythagorean triples

−1 1

−1

1
(0, 1) (

−2r

1 + r 2
,

1 − r 2

1 + r 2

)

Since r is rational, the second point of intersection is too!
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Pythagorean triples

What we’ve discovered!

Pythagorean triples

Reduced

Rational points
on the circle in

the first quadrant

Rational numbers
between −1 and 0
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Pythagorean triples

Listing the rational numbers

We can systematically list off the rational numbers between −1 and 0 as
follows:

−
1

2

−
1

3
−

2

3
−

1

4 �
��−
2

4
−

3

4
−

1

5
−

2

5
−

3

5
. . .
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Pythagorean triples

Generating the Pythagorean triples

Pythagorean triples

Reduced

Rational points
on the circle in

the first quadrant

Rational numbers
between −1 and 0
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Pythagorean triples

r = −
1

2

 
(

1

5/4
,

3/4

5/4

)
=

(
4

5
,

3

5

)
 (4, 3, 5)

(0, 1)
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Pythagorean triples

Rational
Slope

Rational
Point

Reduced
Triple

−1/2  (4/5, 3/5)  (4, 3, 5)

−1/3  (3/5, 4/5)  (3, 4, 5)

−2/3  (12/13, 5/13)  (12, 5, 13)

−1/4  (8/17, 15/17)  (8, 15, 17)

−3/4  (24/25, 7/25)  (24, 7, 25)

...
...

...
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−1/3  (3/5, 4/5)  (3, 4, 5)

−2/3  (12/13, 5/13)  (12, 5, 13)

−1/4  (8/17, 15/17)  (8, 15, 17)

���−2/4

−3/4  (24/25, 7/25)  (24, 7, 25)
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Pythagorean triples

We probably could have found those ones just messing around on a
calculator, but we can also use this method to generate enormous
Pythagorean triples.

For example, starting with r = −13711/31161 (which is a rational number
between −1 and 0), we get the Pythagorean triple

(472 248 471, 391 508 200, 579 499 721)

which you might not have known about.
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Pythagorean triples

Food for thought

When I wanted to find a really big Pythagorean triple, I chose the really
crazy-looking fraction r = −13711/31161 instead of something like
r = −5/6. Why might crazy-looking fractions give us big Pythagorean
triples?
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The Hardy-Ramanujan number

Outline

1 Pythagorean triples

2 The Hardy-Ramanujan number

3 Fermat’s last theorem

4 What is arithmetic geometry?
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The Hardy-Ramanujan number

Hardy and Ramanujan

Around 1919, G. H. Hardy visited Srinivas Ramanujan when he was sick.
Hardy mentioned that he had ridden in taxicab number 1729 on his way
over, and that he thought it was “rather a dull number.”

Ramanujan immediately responded, “No, Hardy! It is a very interesting
number. It is the smallest number expressible as the sum of two cubes in
two different ways.”

And indeed, 1729 = 13 + 123 = 93 + 103.
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The Hardy-Ramanujan number

1729 as a sum of cubes

Ramanujan was talking about writing 1729 as the sum of cubes of two
positive integers.

Let’s think about the related problem of writing 1729 as the sum of cubes
of two rational numbers.
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The Hardy-Ramanujan number

In other words, we want to think
about rational points on the elliptic
curve

x3 + y 3 = 1729.

Ramanujan gave us two rational
points on this elliptic curve.

Is there a systematic way of
producing all of the rational points?

−15 15

−15

15
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The Hardy-Ramanujan number

We have one really easy way of
finding new rational points.

Our curve is symmetric about y = x .

So, if P = (x0, y0) is a rational point,
so is its reflection across this line.

Let’s call this reflected point −P.
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The Hardy-Ramanujan number

However, reflecting points across y = x by itself doesn’t get us very far.

What else could we try?

Previously our strategy for finding rational points was to first find one
rational point and then to draw lines of rational slope through that point.

Let’s try it!
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The Hardy-Ramanujan number

Let’s take the point (1, 12)...

... and draw the line of slope −1/2
through it.

It intersects the curve in two other
points, whose x-coordinates are

1

7

(
−41±

√
3558

)
,

and these are not rational numbers.

What went wrong?

−15 15

−15

15 (1,12)
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The Hardy-Ramanujan number

The line with rational slope r through the point (1, 12) has equation

y = r(x − 1) + 12.

We substitute this into x3 + y 3 = 1729 to get

x3 + (r(x − 1) + 12)3 = 1729.

Notice that...

this equation is (usually) cubic, so it (usually) has 3 roots, and

it has rational coefficients,

but we only know for sure that it has one rational root: namely, x = 1.

The fact about polynomials with rational coefficients that we used earlier
doesn’t apply anymore.
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The Hardy-Ramanujan number

However, if we knew that the cubic equation had two rational roots, then
that fact would guarantee us another rational root.

This gives us an idea!

Let’s insist that the line through (1, 12) also pass through another rational
point on the curve.

Thankfully, Ramanujan gave us another point: namely, (9, 10).
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The Hardy-Ramanujan number

We have the two rational points
(1, 12) and (9, 10).

Draw the line that passes through
them:

y =
−x

4
+

49

4
.

It intersects the curve in another
point, whose coordinates are(

−37

3
,

46

3

)
.

This is a rational point!

−15 15

−15

15 (1, 12)

(9, 10)
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The Hardy-Ramanujan number

So we’ve discovered another way of writing 1729 as a sum of two rational
cubes: (

−37

3

)3

+

(
46

3

)3

= 1729.
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The Hardy-Ramanujan number

Drawing secants

We can generalize what we’ve observed.

Given two different rational points P and Q on the curve x3 + y 3 = 1729,
the line that goes through them will (usually) intersect the curve in
another point, and this point must be rational.

Our argument that the third point of intersection must be rational was
kind of abstract, but it is possible to write down its coordinates explicitly
in terms of the coordinates of P and Q. Try it at home!
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The Hardy-Ramanujan number

Snag

Why the “usually”?

Notice that that y = −x is a slant
asymptote for the curve.

When we draw the line through P
and −P, it has slope −1, so it and
the curve are asymptotically parallel.

So there is no third point of
intersection!

−15 15

−15

15
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The Hardy-Ramanujan number

Fiat O!

We “solve” this problem by conjuring up a new rational point on the
curve, called “the point at infinity” and denoted O.

We declare O to be a point of intersection of our curve with any line that
is asymptotically parallel to it (that is, has slope −1).

Now every line passing through two distinct rational points P and Q on
the curve intersects the curve in a third rational point.

Problem “solved”!
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The Hardy-Ramanujan number

Wait, what...?

I thought parallel lines never intersected!

These railroad tracks are parallel and they never actually intersect, but it
looks like they meet up at a point off “at infinity” on the horizon.

This idea is the starting point for projective geometry.
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The Hardy-Ramanujan number

“Adding” points

Addition of numbers is a nice way of taking two numbers and producing a
third number.

We can define a similar “addition” on the set of rational points of our
elliptic curve (including the point at infinity O).

We’ll call this set E .

For the experts...

We are going to turn E into an abelian group with identity element O.
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The Hardy-Ramanujan number

Addition on E

Start with any two distinct points P
and Q.

Consider the line passing through
them.

Let R be the third point at which E
intersects this line.

Then define P + Q to be the
reflection of R across the line y = x .

−15 15

−15

15 P Q
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The Hardy-Ramanujan number

Generating the rational points

Let’s start with the two rational points R = (1, 12) and S = (9, 10),

and
iterate the following operations to generate more rational points on the
curve x3 + y 3 = 1729.

Take a rational point P on the curve that we’ve already generated,
and generate −P.

Take two distinct rational points P and Q on the curve that we’ve
already generated, and generate P + Q.

Do we generate all of the rational points on the curve this way?
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The Hardy-Ramanujan number

Let’s take a step back...

There could be (and in fact, there are) an infinite number of rational
points on our elliptic curve.

Do we have any reason to think that we could generate all of them
starting with only two?

A hallmark of 20th century arithmetic geometry is the Mordell-Weil
theorem, which tells us that there is some finite set of rational points that
will generate the rest.

For the experts...

The Mordell-Weil theorem says that E is a finitely generated abelian group.

Shishir Agrawal Smörg̊asbord February 2, 2018 55 / 75
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The Hardy-Ramanujan number

But how many points?

But we still don’t know that two points is enough. Maybe we would need
a trillion points to get the job done...

Using some advanced techniques, we can prove that two points is enough.

For the experts...

By “reducing modulo various primes,” we learn that E is torsion-free.

By using “3-descent,” we learn that E has rank at most 2.
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The Hardy-Ramanujan number

Do Ramanujan’s points work?

So we’ve learned that some pair of points can in fact generate all of the
others, but not just any pair will do.

Do Ramanujan’s points R and S actually generate all of the others?

In general, finding rational points that generate all the rest is very difficult.

Fortunately, we have computers!
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The Hardy-Ramanujan number

mwrank

J. E. Cremona has written a package called mwrank for the mathematical
programming language Sage which can sometimes find rational points that
provably generate the other rational points on an elliptic curve.

When we ask mwrank to find generators for E , it returns Ramanujan’s
points R = (1, 12) and S = (9, 10). Just as important, mwrank returns a
guarantee that these points are provably generators.

Ramanujan’s points do generate all of the others!
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The Hardy-Ramanujan number

Food for thought

We defined P + Q when P and Q are different. What should P + P
be? (Hint: P + P = (P + Q) + (P − Q).)

Once you’ve worked out the answer to the previous question, explain
why there is no P ∈ E such that P + P = O.
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Fermat’s last theorem
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1 Pythagorean triples

2 The Hardy-Ramanujan number
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4 What is arithmetic geometry?
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Fermat’s last theorem

Fermat’s last theorem

In 1637, Pierre de Fermat wrote in the margin of a
copy of Diophantus’ Arithmetica that there were no
nonzero integer solutions to the equation

an + bn = cn

for any exponent n ≥ 3.

He claimed, “I have discovered a truly marvelous
proof of this, which this margin is too narrow to
contain.”

No proof by Fermat has ever been found.

He did, however, prove this for the exponent n = 4.
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Fermat’s last theorem

Let’s make this easier...

One way that mathematicians approach problems is by proving that they
can get away with solving a smaller problem.

Reduction

If there is a counterexample to Fermat’s last theorem for any exponent,
then there must be a counterexample for some prime exponent.

Let’s see why!
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Fermat’s last theorem

Suppose that we have a counterexample (a, b, c) to Fermat’s last theorem
for some exponent n ≥ 3.

In other words, we have

an + bn = cn.

Let’s write n = mp where p is the largest prime dividing n.

Let’s first think about what happens when p 6= 2. We can rewrite our
equation as

(am)p + (bm)p = (cm)p .

This gives us a counterexample (am, bm, cm) to Fermat’s last theorem with
prime exponent p.
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Fermat’s last theorem

What about p = 2?

The case p = 2 is a just slightly trickier.

Remember that we saw that a2 + b2 = c2 has infinitely many solutions.

I’ll let you think about how to deal with this case. (Hint: Remember that
Fermat proved the case n = 4.)
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Fermat’s last theorem

Century of stagnation

For over a hundred years after Fermat’s death in
1665, there was no definitive progress on Fermat’s
last theorem.

Then, in 1770, Leonhard Euler published a proof of
Fermat’s last theorem with exponent p = 3.
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Fermat’s last theorem

Legendre and Dirichlet

Half a century later, in 1825, Adrien-Marie Legendre and Johann Peter
Gustav Lejeune Dirichlet independently published proofs for p = 5.
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Fermat’s last theorem

Lamé

In 1839, Gabriel Lamé proved the case p = 7.

Around 1850, he announced that he had a proof for
arbitrary primes p ≥ 3.

But his proof was incorrect.

Lamé was not the only one: over the centuries,
thousands of incorrect proofs of Fermat’s last
theorem have been proposed.
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Fermat’s last theorem

Kummer and the regular primes

Soon after Lamé’s incorrect proof, Ernst Kummer
adapted Lamé’s strategy to give a correct proof for
all regular primes.

Most primes are regular: the smallest few irregular
primes are

37, 59, 67, 101, 103, 131, . . . .
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Fermat’s last theorem

Computational studies

In the latter half of the 1900s, computational methods were used to verify
Fermat’s last theorem for larger and larger irregular primes.

By 1954, it had been verified for all primes up to 2521...

By 1978, all primes up to 124 991...

And by 1993, all primes up to 4 000 000.
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Fermat’s last theorem

Enter arithmetic geometry.
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Fermat’s last theorem

Serre and Ribet

In 1985-86, Jean-Pierre Serre and Ken Ribet
proved that, if (a, b, c) were a counterexample
to Fermat’s last theorem for some prime
exponent p ≥ 5, the elliptic curve

y 2 = x(x − ap)(x + bp)

would have some very strange properties...

Properties so strange, in fact, that it had been
conjectured a few decades earlier that no elliptic
curve could have those properties!
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Fermat’s last theorem

Wiles

In 1995, Andrew Wiles proved that the elliptic curve

y 2 = x(x − ap)(y + bp)

was not as strange as it would have to be for
(a, b, c) to be a counterexample to Fermat’s last
theorem with prime exponent p ≥ 5.

This completed the proof of Fermat’s last theorem,
a full 358 years after Fermat wrote that little note
in the margin.
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What is arithmetic geometry?

Outline

1 Pythagorean triples

2 The Hardy-Ramanujan number

3 Fermat’s last theorem

4 What is arithmetic geometry?

Shishir Agrawal Smörg̊asbord February 2, 2018 73 / 75



What is arithmetic geometry?

What is arithmetic geometry?

A geometric object defined by polynomial equations is called a variety.

We have just met the following examples of varieties.

The circle x2 + y 2 = 1

The elliptic curve x3 + y 3 = 1729

The elliptic curve y 2 = x(x − ap)(x + bp)

The geometry of all of these varieties was linked to certain number
theoretic problems.

The study of these kinds of relationships is arithmetic geometry.
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What is arithmetic geometry?

Thank You!

Questions?
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