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1 Introduction

It is a foundational result of topology that the topological fundamental group of a reasonable topological

space classifies its covering spaces. This result has an algebraic analogue: for any connected scheme X, there

exists a profinite group πpXq such that the category FÉtX of finite étale coverings of X is equivalent to the

category FSetπpXq of finite sets on which πpXq acts continuously. In fact, the profinite group πpXq is unique

up to isomorphism, and is called the (étale) fundamental group of X [4, theorem 1.11].1

We will prove the existence assertion of this theorem when X is a curve, by which we mean it satisfies

any of the following equivalent conditions [1, proposition 9.2 and theorem 9.3].

(a) The scheme X is one-dimensional, locally noetherian, normal and integral.

(b) The scheme X is connected, locally noetherian, and every local ring OX,x is either a field or a discrete

valuation ring.

(c) The scheme X is connected and has a covering by affine open subschemes of the form SpecA, where A

is Dedekind.

(d) Every nonempty affine open subscheme of X is of the form SpecA, where A is Dedekind.

1More precisely, the profinite group πpXq depends on the choice of a geometric point of X. See [4] for details.

1



In this case, we will construct the fundamental group of X as the Galois group of a particular field extension

M of the function field K of X. We describe this field extension M and construct an equivalence of categories

Q : FÉtX Ñ FSetGalpM{Kq in section 3. The preceding sections define necessary notions and establish basic

properties. To conclude, we demonstrate the arithmetic and geometric significance of the fundamental group

by calculating some examples.

Essentially all results contained herein can be generalized, albeit with varying degrees of difficulty [4].

Nonetheless, we confine ourselves to the special case of curves for the sake of both brevity and concreteness.

But before we begin, we briefly review some of the generalities regarding finite étale morphisms that permit

us to legitimately consider only curves for the remainder of our discussion.

1.1 Finite étale morphisms

Let B be a finite and projective A-algebra. The trace TrB{Apbq of an element b P B is defined to be the trace

of the A-linear map given by multiplication by b. Then TrB{A : B Ñ A is A-linear, and we define

ΦB{A : B // HomApB,Aq

by ΦB{Apbqpxq � TrB{Apbxq. If ΦB{A is an isomorphism, then B is separable [4, section 4.8].

Proposition 1.1. Let A be a ring and let B and C be a A-algebras.

(a) If B is a finite, projective and separable A-algebra, then B bA C is a finite, projective and separable

C-algebra.

(b) Suppose that C is faithfully flat. Then BbA C is a finite, projective and separable C-algebra if and only

if B is a finite, projective and separable A-algebra.

Proof sketch. If B is a finite projective A-algebra, it is evident that B bA C is a finite projective C algebra.

If, in addition, C is faithfully flat, then it is clear that �bA C will also reflect finite projectivity of B. For

separability, we use the fact that B is finitely presented to obtain a natural identification

HomApB,Aq bA C
� // HomCpB bA C,AbA Cq

� // HomCpB bA C,Cq

which makes the diagram

B bA C
idBbAC

//

ΦBbidC

��

B bA C

ΦBbAC

��

HomApB,Aq bA C �
// HomCpB bA C,Cq

commute. Thus ΦB b idC is an isomorphism if and only if ΦBbAC is an isomorphism. Both assertions now

follow quickly. See [4, proposition 4.14] for details.

Theorem 1.2. Let K be a field with algebraic closure K̄ and let B be a finite K-algebra. Further, let B̄ be

the finite K̄-algebra B bK K̄. Then the following are equivalent.

(a) B is a finite separable K-algebra.

(b) B̄ is a finite separable K̄-algebra.

(c) B̄ is isomorphic to K̄n for some n ¥ 0.

(d) B is isomorphic to
±t
i�1Bi as K-algebras, where each Bi is a finite separable extension of K.

Proof reference. See [4, theorem 2.7].
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A morphism f : Y Ñ X of schemes is flat at y P Y if the local map OX,fpyq Ñ OY,y is a flat homomorphism.

Then f is flat if it is flat at all y P Y (see proposition 2.2 for a reformulation in the case of curves). A morphism

f : Y Ñ X of schemes is unramified at y P Y if mfpyqOY,y � my and the residue field kpyq is a finite separable

extension of kpxq. It is unramified if it is locally of finite type and unramified at all y P Y (see section 2.2

for the case of curves).

Finally, f : Y Ñ X is étale if it is flat and unramified, and finite étale if it is finitely presented2 and étale

[4, section 6]. When X is locally noetherian, this is equivalent to being finite and étale.

Proposition 1.3. Let f : Y Ñ X be a morphism of schemes. Then the following are equivalent.

(a) f is finite étale.

(b) There is an affine open cover tSpecAi � Xu such that f�1pSpecAiq � SpecBi for Bi a finite, free and

separable Ai-algebra.

(c) For every affine open subscheme SpecA � X, f�1pSpecAq � SpecB for a finite, projective and separable

A-algebra B.

Proof sketch. Using the fact that finitely presented and flat is the same as finitely generated and projective,

which is the same as locally free of finite rank [4, theorem 4.6 and lemma 6.5], we reduce to proving the

following statement. If A is a ring and B is a finite and free A-algebra, then B is seperable over A if and

only if SpecB Ñ SpecA is unramified. By base changing to fibers kppq for prime ideals p � A, we further

reduce to the case when A is a field. In this case, B is artinian so we may write B �
±t
i�1Bi, where Bi

is the localization of B at a prime ideal q � B. Thus SpecB Ñ SpecA is unramified if and only if Bi is a

finite separable field extension of A. We now apply theorem 1.2. See [4, proposition 6.9] for details.

A finite étale map f : Y Ñ X is also called a finite étale covering of X. We denote by FÉtX the category

of finite étale coverings of X, with a morphism between coverings Y Ñ X and Y 1 Ñ X being a morphism

Y Ñ Y 1 forming a commuting triangle.

Y //

  

Y 1

~~

X

A priori, no restrictions are imposed on the morphism Y Ñ Y 1, but it turns out that this morphism is also

guaranteed to be finite étale [4, proposition 5.15]. We will prove this in the case of curves in proposition 2.6.

1.2 Finite étale coverings of curves

Suppose X is an integral scheme with function field K, and let L be a field extension of E. Then for

every affine open subscheme SpecA � X, A is a subring of L, and if B is the integral closure of A in L,

then SpecA ÞÑ B defines a OX -algebra B which is quasi-coherent because integral closure is stable under

localization [1, proposition 5.12]. Thus, by setting Y � SpecX B, we obtain an affine morphism f : Y Ñ X

called the normalization of X in L.

All finite étale coverings of a normal integral scheme arise as normalizations. To prove this, we will

use the criterion of proposition 1.3, so we begin with the following characterization of finite, projective and

separable algebras over an entire ring integrally closed in its field of fractions.

Lemma 1.4. Let A be an entire ring integrally closed in its field of fractions K, and let B be a finite,

projective and separable A-algebra. Then there are finite separable field extensions L1, . . . , Lt of K such that

2We follow [4] in the definition of a finitely presented morphism: the map f : Y Ñ X is finitely presented if for every affine
open subscheme SpecA � X, we have f�1pSpecAq � SpecB for B a finitely presented A-module.
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BbAK is isomorphic to
±t
i�1 Li, and this isomorphism induces an isomorphism of B with

±t
i�1Bi, where

Bi is the integral closure of A in Li.

Proof. The isomorphism of B bA K with
±t
i�1 Li results from proposition 1.1 and theorem 1.2. Thus we

regard B �
±t
i�1 Li, and it is clear that B �

±t
i�1Bi since B is a finite A-algebra. Conversely, suppose

x P
±t
i�1Bi. Set Tr � TrBbAK{K , and observe that for any y P B, we have Trpxyq is given (up to sign) by

the next-leading coefficient of the characteristic polynomial over K corresponding to multiplication by xy. It

is well-known that the characteristic polynomial is a power of the minimal polynomial over K. Since xy P B

is integral over A, which is integrally closed in K, its minimal polynomial over K must have coefficients in

A. Thus Trpxyq P A.

In other words, y ÞÑ Trpxyq defines an A-linear map B Ñ A, so since B is a finite, projective and

separable A-algebra, there exists an x1 P B such that Trpxyq � TrB{Apx
1yq for all y P B. It follows from

basic properties of the trace that Trpxyq � Trpx1yq for all y P B bA K. Since B bA K is separable over K,

we conclude that that x � x1 P B, so B �
±t
i�1Bi.

Proposition 1.5. Let X be a normal integral scheme and f : Y Ñ X a finite étale morphism, and suppose

further that Y is connected. Then Y is integral, and if L is the function field of Y , then f is the normalization

of X in L.

Proof. Let SpecA � X be an affine open subscheme. Then A is an entire ring integrally closed in its field

of fractions, so if f�1pSpecAq � SpecB, proposition 1.3 shows that B is a finite, projective and separable

A-algebra, so lemma 1.4 states that B is a product of entire rings. Thus SpecB is a disjoint union of open

irreducible subsets and all of its local rings are entire. Letting SpecA � X vary, we see that Y must also

be a disjoint union of open irreducible subsets with all local rings entire. Since Y is connected, we conclude

that Y must be irreducible and therefore integral. Moreover, now lemma 1.4 also shows that Y is precisely

the normalization of X in the function field L of Y .

Proposition 1.6. Let X be a curve with function field K and let L be a finite separable field extension of

K. If Y Ñ X is the normalization of X in L, then Y is a curve.

Proof. The statement is local, so it suffices to consider the case X � SpecA for A a Dedekind ring. Then

Y � SpecB for B the integral closure of A in L. Since A is noetherian, B is finitely generated as an A-module

[1, proposition 5.17], so is noetherian. Also, since B is integral over A, dimB � dimA � 1. The field of

fractions of B is L, so B is integrally closed in its field of fractions. Thus B is Dedekind [1, theorem 9.3].

Letting SpecA � X vary, we obtain a cover of Y of the form SpecB for Dedekind rings B, and therefore

conclude that Y is a curve.

Corollary 1.7. Let X be a curve and Y Ñ X a finite étale covering of X. Then Y �
²
Yi and each Yi is

a curve.

Proof. Since Y Ñ X is finite étale, if Yi is a connected component of Y , the map Yi Ñ X is also clearly

finite étale. Thus Yi is the normalization of X in the function field of Yi, so Yi is a curve.

2 Morphisms of curves

In this section, we characterize what it means for morphisms of curves to be flat and unramified. We then

establish some useful properties of normalizations that will be used in subsequent sections.

2.1 Finite and flat morphisms

Lemma 2.1. Let A be a discrete valuation ring with uniformizer π and let M an A-module. Then M is flat

if and only if π is not a zero-divisor on M . Moreover, if M is finitely generated, then M is flat if and only

if it is free.
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Proof. Since A is a discrete valuation ring, the set of ideals pπiq as i varies is all ideals of A [1, proposition

9.2]. Thus M is flat if and only if the multiplication map pπiqbM ÑM is injective for all i [3, chapter XVI,

proposition 3.7]. In other words, M is flat if and only if πi is not a zero-divisor on M for all i. Furthermore,

if π is not a zero-divisor on M , then neither is πi for any other i. This proves the first statement, so now

suppose M is finitely generated. The above shows that M is flat if and only if it is torsion-free, and since A

is a principal entire ring, we conclude that M is torsion-free if and only if it is free [3, theorem 7.3].

Proposition 2.2. A morphism f : Y Ñ X of curves is flat if and only if it maps the generic point of Y to

the generic point of X.

Proof. Suppose first that f is flat and suppose y P Y maps to a closed point x � fpyq P X. Let πx be a

uniformizer for the discrete valuation ring OX,x. The local homomorphism f 7 : OX,x Ñ OY,y must map πx
into my, but since f is flat, f 7pπxq cannot be a zero-divisor in OY,y by lemma 2.1. Thus f 7pπxq is a nonzero

element of my, so OY,y is not a field and y cannot be the generic point of Y .

Conversely, suppose f maps the generic point y P Y to a closed point x � fpyq P X. Then OX,x is

a discrete valuation ring, so letting πx be a uniformizer, we see that f 7 : OX,x Ñ OY,y must map πx into

my � 0. Therefore πx is a zero-divisor on OY,y, so OY,y cannot be flat over OX,x by lemma 2.1.

Corollary 2.3. A finite morphism f : Y Ñ X of curves is flat if and only if it is surjective. Moreover, if

the finite morphism f is not flat, its image consists of a single closed point of X.

Proof. The image of a finite morphism must be closed. Therefore f is flat if and only if its the image is a

closed set containing the generic point, if and only if it is surjective. Moreover, since Y is irreducible, its

image must be irreducible, so if f is not flat, its image is a nonempty, proper, closed and irreducible subset

of X. Since X is one-dimensional, this implies that the image of f is a single closed point of X.

Lemma 2.4. Suppose that

Y
g

//

f
  

Y 1

f 1~~

X

is a commutative diagram of morphisms of curves, and that f and f 1 are finite. Then g is finite. Moreover,

f is flat if and only if g and f 1 are flat.

Proof. Let SpecA � X be an affine open subscheme. Then g�1pSpecAq � SpecB for B a finitely generated

A-module. Also, f 1�1pSpecAq � SpecB1 for B1 a finitely generated A-module. Thus

g�1pSpecB1q � pf 1 � gq�1pSpecAq � f�1pSpecAq � SpecB

and B is finitely generated over A, so it is also certainly finitely generated over B1. As SpecA � X varies,

the sets SpecB1 � Y 1 form an open cover, so we conclude that g is finite.

If g and f 1 are flat, then they are both surjective. Then f is surjective and therefore flat as well.

Conversely, suppose f is flat. Then it is surjective, so f 1 is surjective and therefore flat as well. Moreover, if

g is not flat, then its image is a single closed point of Y 1, so the image of the composite f 1 � g is also a single

closed point of X, which contradicts the fact that f 1 � g � f is surjective.

Let Y Ñ X be a finite and flat morphism of curves. Then the generic point of Y maps to the generic

point of X, so if K and L are the function fields of X and Y , respectively, the finite morphism Y Ñ X

induces a finite field extension K Ñ L. We define the degree of Y over X to be

rY : Xs � rL : Ks.
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2.2 Ramification

Let Y Ñ X be a finite and flat morphism of curves, and let K and L be the function fields of X and Y ,

respectively. Let Lsep denote the separable closure of K inside L. Then we define the separable degree of Y

over X by

rY : Xssep � rL : Kssep � rLsep : Ks

and the inseparable degree of Y over X by

rY : Xsins � rL : Ksins � rL : Lseps.

We say that Y Ñ X is separable, or inseparable, or purely inseparable if L is a separable, or inseparable, or

purely inseparable field extension of K, respectively. The following are easily seen to be equivalent.

(a) The morphism Y Ñ X is separable.

(b) The separable degree rY : Xssep coincides with the degree rY : Xs.

(c) The morphism Y Ñ X is unramified at the generic point of Y .

For a closed point y P Y , set x P X be its image. Since Y Ñ X is finite, it is a closed map, so x must

be a closed point and OX,x a discrete valuation ring. The ramification index epyq of y is defined to be the

valuation of the image of a uniformizer πx P OX,x under the map OX,x Ñ OY,y. Thus, epyq � 1 if and only

if mx � OY,y � my. When it is ambiguous, we will also write epy{xq for the ramification index of y over x.

Using this terminology, Y Ñ X is unramified at y if and only if epyq � 1 and the residue field kpyq is a

finite and separable field extension of kpxq. The degree rkpyq : kpxqs of the field extension of residue fields is

called the residue class degree of y.

Lemma 2.5. Suppose that

Y
g

//

f
  

Y 1

f 1~~

X

is a commutative diagram of finite and flat morphisms of curves. Then f is unramified if and only if g and

f 1 are unramified.

Proof. Consider any set of points y P Y , y1 P Y 1, and x P X such that gpyq � y1 and f 1py1q � x. A uniformizer

πx P OX,x maps to an element of valuation epy1{xq in OY 1,y1 , which then maps to an element of valuation

epy1{xqepy{y1q in OY,y. Since the diagram commutes, we obtain

epy1{xqepy{y1q � epy{xq.

Moreover, the extension kpyq over kpxq can be decomposed as the composite of the extensions of kpy1q over

kpxq and then kpyq over kpy1q.

If g and f 1 are unramified, then epy1{xq � epy{y1q � 1, so epy{xq � 1, and then kpyq over kpxq is finite and

separable since kpy1q over kpxq and kpyq over kpy1q are. Letting y, y1, and x vary shows that f is unramified.

Conversely, if f is unramified, then 1 � epy{xq � epy1{xqepy{y1q forces epy1{xq � epy1{yq � 1, and then since

kpyq is a finite separable extension of kpxq, it follows that both kpy1q over kpxq and kpyq over kpy1q are as

well. Again letting x, y and y1 vary, we conclude that g and f 1 are both unramified.

We can now easily show that a morphism between finite étale coverings of a curve must itself be finite

étale as well.
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Proposition 2.6. Let X be a curve and suppose Y Ñ X and Y 1 Ñ X are finite étale coverings of X. If

Y //

  

Y 1

~~

X

is any morphism in FÉtX , then Y Ñ Y 1 is a finite étale morphism.

Proof. We know from proposition 1.6 that Y and Y 1 are curves. By lemma 2.4, it follows that Y Ñ Y 1 is

finite and flat, and by lemma 2.5, it is unramified.

We conclude our discussion of ramification for morphisms of curves with the following formula relating

the degree of a finite and flat morphism of curves with ramification indices and residue class degrees. We

will not need this for proving the existence of the fundamental group of a curve, but we will use it in the

subsequent calculations.

Proposition 2.7. Let f : Y Ñ X be a finite and flat morphism of curves. Then for every closed point

x P X, ¸
yPf�1pxq

epyqrkpyq : kpxqs � rY : Xs.

Proof. We first claim that, for any closed point x P X, the preimage f�1pxq is a nonempty and finite set of

closed points y1, . . . , yr, and

pf�OY qx �
rà
i�1

OY,yi .

To see this, observe that since f is finite, it is quasi-finite, and since it is flat, it is surjective, so the preimage

of x must be a nonempty, finite set of closed points y1, . . . , yr P Y . Now observe that

pf�OY qx � colim
UQx

f�OY pUq � colim
UQx

OY pf
�1pUqq

so by taking the limit over the cofinal set of all open neighborhoods U of x such that f�1pUq is a collection

of disjoint neighborhoods V1, . . . , Vr of y1, . . . , yr, respectively, it follows that

pf�OY qx � colim
UQx

OY

�
r¤
i�1

Vi

�
� colim

UQx

rà
i�1

OY pViq �
rà
i�1

OY,yi ,

where the second isomorphism is a result of the sheaf axiom for OY .

Next, we claim that f�OY is locally free of rank rY : Xs on X. To see this, fix any point x P X. Since f

is finite and flat, we know that pf�OY qx is finitely generated and flat over OX,x since it is a direct sum of the

stalks OY,yi which are flat over OX,x. By lemma 2.1, it must be free of some finite rank r. Thus there exists

some open neighborhood U of x such that pf�OXq|U is free of rank r [4, theorem 4.6]. Then U also contains

the generic point, so we must have r � rY : Xs. Letting x P X vary, we conclude that f�OY is locally free

of rank rY : Xs.

Now clearly it suffices to prove that, if x P X is a closed point, for any y P f�1pxq, the local ring OY,y

is free of rank epyqrkpyq : kpxqs over OX,x. Since tensoring up to kpxq preserves rank, it further suffices to

prove that

OY,y bOX,x
kpxq � OY,y{pmx � OY,yq

is of dimension epyqrkpyq : kpxqs over kpxq. Let πy be a uniformizer for OY,y such that a uniformizer of OX,x

is mapped to π
epyq
y , so

OY,y{pmx � OY,yq � OY,y{pπ
epyq
y q.
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Now consider the filtration

OY,y � pπyq � pπ2
yq � � � � � pπeypyqq.

The successive quotients of this filtration are

pπiyq{pπ
i�1
y q � pπiyq b kpyq

which is clearly one-dimensional over kpyq by Nakayama’s lemma, and therefore has dimension rkpyq : kpxqs

over kpxq. Since there are epyq steps in the filtration, we conclude that OY,y bOX,x
kpxq has dimension

epyqrkpyq : kpxqs over kpxq.

2.3 Normalizations

We saw in proposition 1.5 that finite étale morphisms into a curve arise as normalizations. Here we prove

the converse statement.

Proposition 2.8. Let X be a curve with function field K and let f : Y Ñ X be the normalization of X in

a finite separable field extension L of K. Then f is a finite and flat morphism of curves of degree rL : Ks.

Proof. We know that Y is a curve by proposition 1.6. To see that Y Ñ X is finite and flat, we may assume

that X � SpecA is affine. Then Y � SpecB for B the integral closure of A in L. Since A is noetherian,

B is finitely generated as an A-module [1, proposition 5.17], so f is finite. Moreover, f is surjective by the

lying-over theorem, so by corollary 2.3, we conclude that f is finite and flat. Finally, the field of fractions of

B is L, so f is of degree rL : Ks.

Suppose X is a curve with function field K, and suppose L is a finite separable extension of K. If the

normalization Y Ñ X of X in L is an unramified morphism, then we say that X is unramified in L. By

proposition 2.8, this is precisely the condition necessary for the normalization to be a finite étale morphism.

Using the terminology of [3, chapter V, section 1], we now show that the class of field extensions of K in

which X is unramified is distinguished.

Proposition 2.9. Let X be a curve with function field K. Suppose L is a finite separable field extension of

K and L1 � L is a subfield. Let Y 1 Ñ X be the normalization of X in L1. Then X is unramified in L if and

only if it is unramified in L1 and Y 1 is unramified in L.

Proof. Let Y Ñ X be the normalization of X in L and let Y Ñ Y 1 to the normalization of Y 1 in L. Then

evidently the diagram

Y //

  

Y 1

~~

X

commutes, and all maps are finite and flat by proposition 2.8. Now apply lemma 2.5.

Proposition 2.10. Let X be a curve with function field K. Suppose L is a finite separable extension of K

with X unramified in L. Let K 1 be a finite separable extension of X and let X 1 Ñ X be the normalization

of X in K 1. Then X 1 is unramified in any compositum L1 of L and K 1.

Proof. Since Y Ñ X is finite étale, it follows from propositions 1.1 and 1.3 that X 1 �X Y Ñ X 1 is finite

étale. By proposition 1.6, we know that X 1 is a curve, so by proposition 1.7, we see that we can write

X 1 �X Y �
²
Y 1
i where each connected component Y 1

i is a curve. This gives us the following cartesian

diagram. ²
Y 1
i

//

��

Y

��

X 1 // X

8



By proposition 2.2, the fiber of
²
Y 1
i over the generic point SpecK 1 Ñ X 1 consists precisely of the generic

points of the connected components of
²
Y 1
i . But also, the fiber of

²
Y 1
i � X 1�XY

1 Ñ X 1 over SpecK 1 Ñ X 1

is SpecK 1 bK L. Consider the surjective map K 1 bK L Ñ L1 given by multiplication. The kernel of this

homomorphism is a point of SpecK 1 bK L whose stalk is L1. In other words, the kernel corresponds to the

generic point of some connected component Y 1
i of

²
Y 1
i , and then Y 1

i has function field L1.

Since the map
²
Y 1
i Ñ X 1 is finite étale, so is Y 1

i Ñ X 1. Thus, by proposition 1.3, Y 1
i Ñ X 1 is the

normalization of X 1 in L1. In fact, since Y 1
i Ñ X 1 is finite étale, we conclude that X 1 is unramified in L1.

A formal consequence of the previous two results is the following.

Corollary 2.11. Let X be a curve with function field K and suppose L and L1 are finite separable extensions

of K. If X is unramified in L and L1, then X is unramified in any compositum E of L and L1.

3 Fundamental group

Notation will remain fixed throughout this section. Let X be a curve with function field K. Let K̄ be an

algebraic closure of K and let I denote the set of all finite and separable field extensions L of K contained

in K̄ such that X is unramified in L. Then let M be the compositum of all such field extensions. We will

call M the maximal unramified extension of K in K̄. Observe that

M �
¤
LPI

L.

To see this, suppose α P L and β P L1 for some L,L1 P I. Then α � β and αβ�1 (when β is nonzero) are

elements of the compositum L � L1 in M , which is in I by corollary 2.11. Thus α � β and αβ�1 are also

contained in
�
LPIM .

Lemma 3.1. Let L be a subfield of M containing K. If L is finite over K, then L P I.

Proof. Since L is a subfield of the separable extension M , it is itself separable. Thus, by the theorem of the

primitive element, we write L � Kpαq for some α P L �M . But M �
�
L1PI L

1, so there exists some L1 P I

such that α P L1, hence L � L1. Proposition 2.9 now states that X is unramified in L.

Lemma 3.2. M is a Galois extension of K.

Proof. Suppose L P I. By the theorem of the primitive element, we may write L � Kpαq, and then let

α1, . . . , αr be the Galois conjugates of α in K̄. The fields Kpαiq are isomorphic to Kpαq as field extensions

of K. Thus, clearly X is unramified in Kpαiq for all i. Corollary 2.11 now implies that X is unramified

in the compositum of all Kpαiq, which is precisely the Galois closure of Kpαq � L. It follows that M is a

Galois extension of K [4, theorem 2.2].

Define G � GalpM{Kq and let FSetG denote the category of finite sets on which G acts continuously,

together with G-equivariant maps. This is a non-full subcategory of the category Set of sets.

The generic point of X defines a morphism SpecK Ñ X. Consider the functor Q : FÉtX Ñ Set given by

QpY Ñ Xq � HomSpecKpSpecM,SpecK �X Y q.

This definition is somewhat opaque, but makes functoriality of Q evident. In the process of showing that Q

induces an equivalence with FSetG, the proof of theorem 3.3 below will unwind this definition.

Theorem 3.3. The functor Q is an equivalence of categories FÉtX Ñ FSetG.

9



Proof. Define a right action of G on the set QpY Ñ Xq by precomposition, so that if ϕ P QpY Ñ Xq and

σ P G, then ϕ � σ � ϕ � Specpσq. If

Y
g

//

  

Y 1

~~

X

is a morphism in FÉtX , it is evident that the induced map

QpY Ñ Xq
Qpgq
// QpY 1 Ñ Xq

is G-equivariant.

Fix a finite étale cover Y Ñ X. We now show that QpY Ñ Xq is a finite set on which G acts continuously.

Notice that SpecK �X Y is precisely the fiber of Y Ñ X over the generic point SpecK Ñ X, so consists

of the generic points of the connected components of Y by proposition 2.2. If we write Y �
²
Yi and each

integral subscheme Yi has function field Li, we see that

SpecK �X Y �
º

SpecLi.

Thus

QpY Ñ Xq � HomSpecK

�
SpecM,

º
SpecLi

	
�
º

HomKpLi,Mq

where passing across the final identification, the right action of G on
²

HomSpecKpSpecM, SpecLiq given

by precomposition becomes a left action on
²

HomKpLi,Mq given by postcomposition. But it is well-known

that

HomKpLi,Mq � G{Hi

as G-sets, where Hi � GalpM{Liq. Since Li is of finite degree over K, the fundamental theorem of Galois

theory states that Hi � G is an open subgroup, which must have finite index in G. Thus we conclude that

each G{Hi and therefore QpY Ñ Xq is finite. Moreover the kernel of the action of G on QpY Ñ Xq is the

open subgroup
�
Hi � G, so the action is continuous. Thus, the image of the functor Q is indeed contained

in FSetG.

Observe that any E in FSetG can be decomposed into orbits and written as E �
²
G{Hi for open

subgroups Hi � G, since the kernel of a continuous action of G on a finite set must be open. By the

fundamental theorem of Galois theory, Li � MHi is finite separable extension of K, and X is unramified

in Li by lemma 3.1. Thus the normalization Yi Ñ X of X in Li is a finite étale morphism, and if we set

Y �
²
Yi, then Y Ñ X is also a finite étale morphism. Moreover, using the same sequence of identifications

as above,

QpY Ñ Xq � HomSpecKpSpecM,SpecK �X Y q �
º

G{GalpM{Liq,

but by the fundamental theorem of Galois theory, we also know that GalpM{Liq � Hi. Thus

QpY Ñ Xq �
º

G{Hi

and we conclude that Q is essentially surjective.

We now show that it is fully faithful. Suppose Y Ñ X and Y 1 Ñ X are both finite étale morphisms. We

wish to show that the map

HomXpY Ñ X,Y 1 Ñ Xq // HomGpQpY Ñ Xq, QpY 1 Ñ Xqq
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is a bijection. We write Y �
²
iPI Yi and Y 1 �

²
jPJ Yj and then, as above, we make the identifications

QpY Ñ Xq �
º
iPI

G{Hi

and

QpY 1 Ñ Xq �
º
jPJ

G{H 1
j

for open subgroups Hi � GalpM{Liq, where Li is the function field of Yi, and H 1
j � GalpM{L1jq for L1j the

function field of Y 1
j . It is clear that a G-equivariant map

h :
º
iPI

G{Hi Ñ
º
jPJ

G{H 1
j

must correspond uniquely to a set map δ : I Ñ J such that h restricts to a G-equivariant map of G{Hi into

G{H 1
δpiq. This induces an inclusion Hi � H 1

δpiq and therefore a field extension Li � L1δpiq. Thus Yi is the

normalization of Y 1
δpiq in Li and there is an induced map Yi Ñ Y 1

δpiq. Piecing together these maps gives a

morphism g : Y Ñ Y 1 in FÉtX . Chasing through the sequence of identifications made above shows that we

must have Qpgq � h, so Q is full. Now suppose

g1 :
º
iPI

Yi Ñ
º
jPJ

Y 1
j

is another map in FÉtX such that Qpg1q � h. Since each Yi is connected, there must exist a δ1 : I Ñ J such

that g1 restricts to a map of Yi into Y 1
δ1piq and the diagram

Yi //

��

Y 1
δ1piq

}}

X

commutes. We know from proposition 2.6 that Yi Ñ Y 1
δ1piq is a finite étale morphism, so by proposition 1.5,

Yi must be the normalization of Y 1
δ1piq in Li. Moreover, since Qpg1q � h, clearly we must have δ1 � δ. Thus g1

exactly matches our construction of g above, so g � g1, and we conclude that Q is fully faithful and therefore

an equivalence.3

Henceforth, we will write πpXq for G � GalpM{Kq. This is the (étale) fundamental group of X.

4 Examples

4.1 Fundamental group of the integers

Consider the curve X � SpecZ. Minkowski’s theorem [6, theorem 5.4.10] states that, in any finite separable

extension L of Q, some prime in the ring of integers of L is ramified. Therefore the maximal unramified

extension of Q is Q itself, and then

πpSpecZq � GalpQ{Qq � 1.

Thus the only finite étale coverings of SpecZ are trivial.

3This proof avoided the construction of an explicit inverse functor FSetG Ñ FÉtX to Q, but the proof of essential surjectivity
of Q effectively describes the action of the inverse functor FSetG Ñ FÉtX on objects.
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4.2 Fundamental group of the projective line

Suppose K is an algebraically closed field. Then P1 is proper over K, and if Y Ñ P1 is any finite étale

morphism, the composite Y Ñ SpecK is proper as well, so Y is a proper curve over K.

Let E denote the function field of P1 and suppose L is a finite separable extension of E of degree n with

P1 unramified in L. Let f : Y Ñ P1 be the normalization of P1 in L. Then Y is a curve, and by Hurwitz’s

formula [2, chapter IV, corollary 2.4], we see that Y has genus g1 � 1 � n. This is impossible unless n � 1,

in which case L � E. Therefore the maximal unramified extension M of E is precisely E, and

πpXq � GalpE{Eq � 1.

In other words, as with SpecZ, the only coverings of P1 are trivial. We remark here that, when K � C,

the analytification of P1 is a sphere, and the ordinary topological fundamental group of the sphere is also

known to be trivial.

4.3 Fundamental groups of elliptic curves

Let K be an algebraically closed field of characteristic p ¥ 0. Suppose X is a proper curve of genus 1 over

K. Let E be the function field of X and L a finite separable field extension of degree n with X unramified

in L. Then let f : Y Ñ X be the normalization of X in L. As before, Y is a proper curve over K and

Hurwitz’s formula implies that Y is of genus 1 as well. In other words, choosing a closed point 0 P X and

then a closed point 0 P f�1p0q, f becomes a surjective isogeny of elliptic curves of degree n. If f̂ : X Ñ Y is

the dual isogeny, we obtain a commutative diagram

X

nX

��

f̂

ww
Y

f   

X

where nX : X Ñ X is multiplication by n. Thus L is contained as a subfield of the extension field En of E

corresponding to nX : X Ñ X. Let Esep
n denote the separable closure of E inside En and observe that we

still have L � Esep
n .

Let nsep
X : X 1 Ñ X the normalization of X in Esep

n . As above, nsep
X is a surjective isogeny of elliptic curves.

Then nsep
X is a separable morphism, so the locus of points at which nsep

X is unramified contains the generic

point, so there must exist an unramified closed point of X.4 Using the translation maps of X shows that

every other closed point is also unramified, so nsep
X is unramified. In other words, the maximal unramified

extension M of E is the union of all Esep
n as n varies.

The preimage of the closed point 0 P X is precisely Kernsep
X . Since K is algebraically closed, the residue

class degrees in the formula of proposition 2.7 are all 1, and since nsep
X is unramified, all ramification indices

are also 1, so the left hand side of the formula counts points in the preimage of 0. Thus,

rEsep
n : Es � rX 1 : Xs � # Kernsep

X � # AutpEsep
n {Eq,

where the last equality is a result of the bijection of [5, chapter III, theorem 4.10(b)], which takes a closed

point x P Kernsep
X to the field automorphism induced by the translation map by x at the generic point. This

4One way of seeing this is to use the fact that nsep
X is unramified at x P X 1 if and only if pΩX1{Xqx � 0. Thus, the set of

ramified points corresponds to the support of the coherent sheaf ΩY {X , which is necessarily closed.
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shows that Esep
n is a finite Galois extension of E. Therefore,

πpXq � GalpM{Eq � lim
n

GalpEsep
n {Eq

where the limit is over positive integers partially ordered by divisibility. Since the prime powers are cofinal

in this set, in fact we have

πpXq �
¹
`

lim
r

GalpEsep
`r {Eq,

where ` varies over primes.

When ` � p, the field extension E`r is of degree `2r over E and therefore cannot be inseparable. Thus

we have E`r � Esep
`r , and

GalpEsep
`r {Eq � GalpE`r{Eq � Ker `rX � pZ{`rZ� Z{`rZq,

whence

lim
r

GalpEsep
`r {Eq � lim

r
pZ{`rZ� Z{`rZq � Z` � Z`.

When p � 0, this is the whole story and we can conclude that

πpXq �
¹
`

Z` � Z`.

Now suppose p ¡ 0. If X is supersingular, then prX is purely inseparable for all r, so Esep
pr � E. Hence

lim
r

GalpEsep
pr {Eq � 1

and we conclude that

πpXq �
¹
`�p

Z` � Z`.

Now suppose X is ordinary. Observe that we have the following commutative diagram

X

prX

��

vv
X 1

pr,sepX   

X

where X Ñ X 1 is the normalization of X 1 in the purely inseparable field extension Esep
pr � Epr . Then

# KerpX Ñ X 1q � rEpr : Esep
pr ssep � 1,

where the first equality is [5, chapter III, theorem 4.10(a)]. This gives us the middle identification in

GalpEsep
pr {Eq � Ker pr,sep

X � Ker prX � Z{prZ,

so

πpXq �
�

lim
r

Z{prZ
	
�
¹
`�p

Z` � Z` � Zp �
¹
`�p

Z` � Z`.

We conclude with a remark about comparisons with topological fundamental group. Suppose K � C

and recall that the analytification of X is a torus, whose topological fundamental group is Z � Z. Notice
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that we can rewrite

πpXq �
¹
`

Z` � Z` � Ẑ� Ẑ

and this is precisely the profinite completion of Z � Z. This phenomenon is what we observed for P1 as

well, and in fact, it is no accident: for a scheme X of finite type over C, the étale fundamental group πpXq

is known to be the profinite completion of the topological fundamental group of the analytification of X.
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