Exponential at infinity

Shishir Agrawal

Let K be a spherically complete nonarchimedean field of mixed characteristic $(0, p)$ and \mathcal{R} the Robba ring over K with indeterminate t. Let ∂ denote differentiation with respect to t on \mathcal{R}. Define $\omega:=|p|^{1 /(p-1)}$. Fix $\alpha \in K^{\times}$. Let E be a free \mathcal{R}-module of rank 1 with generator e, regarded as a differential \mathcal{R}-module by setting

$$
\partial e=\left(-\alpha / t^{2}\right) e .
$$

Observe that $\exp (\alpha / t)$ is a formal solution for the differential equation $\partial+\alpha / t^{2}$. We know that $\exp (t)$ converges if and only if $|t|<\omega$, so $\exp (\alpha / t)$ converges if and only if

$$
|\alpha / t|<\omega \Longleftrightarrow|\alpha| \omega^{-1}<|t| .
$$

Thus E is a trivial differential \mathcal{R}-module if and only if $\exp (\alpha / t) \in \mathcal{R}$ if and only if $|\alpha|<\omega$.
Let us then consider the nontrivial case when $|\alpha| \geq \omega$. It follows from a straightforward insertion of some α 's into the inductive calculations of [DMST13, theorem 1] that

$$
\partial^{n} e=\left(\sum_{k=1}^{n} L(n, k) \alpha^{k} t^{-n-k}\right) e
$$

where $L(n, k)$ denotes a Lah number

$$
L(n, k):=\frac{n!}{k!}\binom{n-1}{k-1} .
$$

In other words, we have

$$
\partial^{[n]} e=\left(\sum_{k=1}^{n} \frac{1}{k!}\binom{n-1}{k-1} \alpha^{k} t^{-n-k}\right) e .
$$

For $\rho<1$, let us compute

$$
R(E, \rho)=\min \left\{\rho, \liminf _{n \rightarrow \infty}\left|\sum_{k=1}^{n} \frac{1}{k!}\binom{n-1}{k-1} \alpha^{k} t^{-n-k}\right|_{\rho}^{-1 / n}\right\} .
$$

For fixed n, we have

$$
\begin{aligned}
\left|\sum_{k=1}^{n} \frac{1}{k!}\binom{n-1}{k-1} \alpha^{k} t^{-n-k}\right|_{\rho}^{-1 / n} & =\left(\max _{k}\left|\frac{1}{k!}\binom{n-1}{k-1}\right||\alpha|^{k} \rho^{-n-k}\right)^{-1 / n} \\
& =\min _{k}|k!|^{1 / n}\left|\binom{n-1}{k-1}\right|^{-1 / n}|\alpha|^{-k / n} \rho^{(n+k) / n} \\
& =\min _{k}\left|\binom{n-1}{k-1}\right|^{-1 / n}\left(\frac{\omega \rho}{|\alpha|}\right)^{k / n} \rho \omega^{-\sigma(k) / n}
\end{aligned}
$$

where we have used the fact that $|k!|=\omega^{k-\sigma(k)}$ in the last step.
Fixing $k=1, \ldots, n$, observe that the binomial coefficient $\binom{n-1}{k-1}$ is an integer, so its norm is at most 1 , so $\left|\binom{n-1}{k-1}\right|^{-1 / n} \geq 1$. Also, we have

$$
\omega|\alpha|^{-1} \rho<\omega|\alpha|^{-1} \leq 1
$$

which means that $\left(\omega|\alpha|^{-1} \rho\right)^{k / n} \geq \omega|\alpha|^{-1} \rho$. Finally, note that $\sigma(k) \geq 1$, so $\omega^{-\sigma(k) / n} \geq \omega^{-1 / n}$. Putting these lower bounds together, we see that

$$
\left|\binom{n-1}{k-1}\right|^{-1 / n}\left(\frac{\omega \rho}{|\alpha|}\right)^{k / n} \rho \omega^{-\sigma(k) / n} \geq \omega^{1-(1 / n)}|\alpha|^{-1} \rho^{2}
$$

for all $k=1, \ldots, n$, so

$$
\liminf _{n \rightarrow \infty}\left|\sum_{k=1}^{n} \frac{1}{k!}\binom{n-1}{k-1} \alpha^{k} t^{-n-k}\right|_{\rho}^{-1 / n} \geq \liminf _{n \rightarrow \infty} \omega^{1-(1 / n)}|\alpha|^{-1} \rho^{2}=\omega|\alpha|^{-1} \rho^{2}
$$

Now consider the subsequence given by terms of the form $n=p^{s}$ for $s \in \mathbb{N}$. For a fixed n of this form, all three quantities

$$
\left|\binom{n-1}{k-1}\right|^{-1 / n},\left(\omega|\alpha|^{-1} \rho\right)^{k / n}, \text { and } \omega^{-\sigma(k) / n}
$$

are minimized when $k=n$. Indeed, the first two quantities are always minimized when $k=n$ (even when n is not of the form p^{s}), and the third is also minimized when $k=n$ since then $\sigma(k)=\sigma(n)=\sigma\left(p^{s}\right)=1$. Thus

$$
\left|\sum_{k=1}^{n} \frac{1}{k!}\binom{n-1}{k-1} \alpha^{k} t^{-n-k}\right|_{\rho}^{-1 / n}=\omega^{1-(1 / n)}|\alpha|^{-1} \rho^{2}
$$

Letting $s \rightarrow \infty$, the limit of this subsequence is $\omega|\alpha|^{-1} \rho^{2}$. Thus $\omega|\alpha|^{-1} \rho^{2}$ is both a subse-
quential limit as well as a lower bound for the limit inferior, so

$$
\liminf _{n \rightarrow \infty}\left|\sum_{k=1}^{n} \frac{1}{k!}\binom{n-1}{k-1} \alpha^{k} t^{-n-k}\right|_{\rho}^{-1 / n}=\omega|\alpha|^{-1} \rho^{2}
$$

which means that

$$
R(E, \rho)=\min \left\{\rho, \omega|\alpha|^{-1} \rho^{2}\right\}=\omega|\alpha|^{-1} \rho^{2} .
$$

Then

$$
\lim _{\rho \rightarrow 1^{-}} R(E, \rho)=\omega|\alpha|^{-1}
$$

When $|\alpha|=\omega$, we see that we have $R(E, \rho)=\rho^{2}$, so E is overconvergent and of highest slope $\beta=1$ [CM00, 4.2-2]. This slope β is also the irregularity of E, since E is of rank 1 .

References

[CM00] Gilles Christol and Zoghman Mebkhout. Sur le théorème de l'indice des équations différentielles p-adiques. III. Annals of Mathematics. Second Series, 151(2):385457, 2000. doi:10.2307/121041.
[DMST13] Siad Daboul, Jan Mangaldan, Michael Z. Spivey, and Peter J. Taylor. The Lah numbers and the nth derivative of $e^{1 / x}$. Mathematics Magazine, 86(1):3947, 2013. URL: http://mathcs.pugetsound.edu/~mspivey/Exp.pdf, doi: 10.4169/math.mag.86.1.039.

