Exponential at infinity

Shishir Agrawal

Let K be a spherically complete nonarchimedean field of mixed characteristic (0, p) and
R the Robba ring over K with indeterminate ¢. Let 0 denote differentiation with respect to t
on R. Define w := |p|"/?*~Y. Fix a € K*. Let E be a free R-module of rank 1 with generator
e, regarded as a differential R-module by setting

de = (—a/t*)e.

Observe that exp(a/t) is a formal solution for the differential equation 9 + a/t?. We know

that exp(t) converges if and only if |t| < w, so exp(«/t) converges if and only if
la/t] <w <= |alw ™ < |t

Thus E is a trivial differential R-module if and only if exp(a/t) € R if and only if |o| < w.
Let us then consider the nontrivial case when |a| > w. It follows from a straightforward

insertion of some a’s into the inductive calculations of | , theorem 1] that
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where L(n, k) denotes a Lah number
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In other words, we have

For p < 1, let us compute
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For fixed n, we have
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where we have used the fact that |[k!| = w*=7*) in the last step.
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Fixing k = 1,...,n, observe that the binomial coefficient (

is at most 1, so (”71)‘_1/71 > 1. Also, we have
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which means that (w|a|™'p)*/™ > w|a|™'p. Finally, note that o (k) > 1, so w™®/m > =1/,

Putting these lower bounds together, we see that
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Now consider the subsequence given by terms of the form n = p® for s € N. For a fixed n of

this form, all three quantities

()

are minimized when k£ = n. Indeed, the first two quantities are always minimized when k = n
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(even when n is not of the form p®), and the third is also minimized when k = n since then
o(k) =o(n) = o(p®) = 1. Thus
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Letting s — oo, the limit of this subsequence is w|a|™!p?. Thus w|a|™1p? is both a subse-



quential limit as well as a lower bound for the limit inferior, so
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which means that

R(E, p) = min{p,wla|~'p*} = wla| " p*.

Then
lim R(E,p) = w|a| ™
p—1-

When |a| = w, we see that we have R(E,p) = p?, so E is overconvergent and of highest
slope § =1 | , 4.2-2]. This slope £ is also the irregularity of F, since F is of rank 1.
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