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1 Introduction
This is an attempt at a gentle introduction to the cotangent complex. Recall that whenever we have morphisms of
schemes

Y X S,
f

there is an exact sequence

f∗Ω1
X/S Ω1

Y/S Ω1
Y/X 0 (1)

of OY -modules [3, tag 01UX]. It isn’t always exact on the left.

Example 1.1. Let S be the spectrum of a field k of characteristic not equal to 2 or 3. Let X = Spec k[x, y]/(y2−x3)
be the cusp and let Y = Spec k[t], with f the “normalization of the cusp,” induced by the unique k-algebra
homomorphism such that x 7→ t2 and y 7→ t3. On global sections, (1) induces the following exact sequence of
k[t]-modules.

(k[t]dx⊕ k[t]dy)/(2t3dy − 3t4dx) k[t]dt k[t]dt/(tdt) 0

The left-most map is given by dx 7→ 2tdt and dy 7→ 3t2dt, and it is easily seen that ω = 3tdx − 2dy is a nonzero
element of the kernel (in fact, it can be verified that ω generates the kernel). Thus, we see that (1) is not exact on
the left.

Sometimes, even when (1) is exact on the left, it doesn’t stay exact on the left after tensoring with some
OY -module and this lack of exactness reflects some geometry.

Example 1.2. Suppose S is the spectrum of a field k of characteristic not 2. Let X = Spec k[x] and Y =
Spec k[x, y]/(y2 − x) with f : Y → X the morphism induced by the inclusion k[x] ↪→ k[x, y]/(y2 − x). Then taking
global sections in (1) gives us the following sequence of modules over B := k[x, y]/(y2 − x).

Bdx (Bdx⊕Bdy)/(2ydy − dx) Bdy/(2ydy) 0

It is not hard to see that the first map is injective. If P ∈ Y is the closed point corresponding to the maximal ideal
(x− a2, y− a) ⊂ B, then tensoring up to the residue field κ(P ) = B/(x− a2, y− a) gives us the following sequence
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of modules over κ(P ).

κ(P )dx (κ(P )dx⊕ κ(P )dy)/(2ady − dx) κ(P )dy/(2ady) 0

If a 6= 0, then the map on the left is evidently injective—it is even an isomorphism. But when a = 0, the map
becomes zero and we lose exactness on the left. More precisely, there are nonzero differential forms near the origin
in X which vanish after pulling back to Y and evaluating at the origin in Y . So the loss of exactness on the left is
reflecting a lack of smoothness over the origin in X.

Now when f is a closed embedding defined by a quasi-coherent ideal I ⊂ OX , we know that Ω1
Y/X = 0, but we

can extend this sequence one term to the left and get an exact sequence

f∗I f∗Ω1
X/S Ω1

Y/S 0δ (2)

of OY -modules, where if d : OX → Ω1
X/S is the universal derivation, then δ is the unique OY -linear map given

locally by δ(s⊗ 1) = ds⊗ 1 for s ∈ I [3, tag 01UZ]. Again, this isn’t always exact on the left.

Example 1.3. Suppose S is the spectrum of a field k. Let X = Spec k[x] and Y = Spec k[x]/(x2) with f induced
by the surjection k[x] →→ k[x]/(x2). Then taking global sections in (2) gives us the following sequence of modules
over B := k[x]/(x2).

(x2)/(x4) Bdx Bdx/(2xdx) 0

Then x3 ∈ (x2)/(x4) is nonzero and maps to 3x2dx = 0 in Bdx, so this map is not injective. In characteristic 2,
the left-most map vanishes altogether.

All of this discussion of failure of exactness on the left suggests that there might be a geometrically meaningful
long exact sequence hiding somewhere.

2 Cotangent complex
For every morphism X → S of schemes, we assign a complex LX/S of locally free OX -modules in non-positive
degrees called the cotangent complex of X over S. We will avoid a construction, but here are some of the important
properties it satisfies.

(CC1) (Functoriality and base change) Given a commutative square

X ′ X

S′ S

v

there is a natural homomorphism
v∗LX/S LX′/S′ .

of complexes of OX′ -modules. If the square is cartesian and ToriOS
(OS′ ,OX) = 0 for all i 6= 0, then this

homomorphism is a quasi-isomorphism.

(CC2) (Fundamental triangle) For every triple

Y X S
f
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of morphisms of schemes, there is a natural distinguished triangle

f∗LX/S LY/S LY/X f∗LX/S [1]

in the derived category D(Y ) of OY -modules.

(CC3) For every morphism X → S, there is a homomorphism γ : LX/S → Ω1
X/S [0] inducing an isomorphism

H0(LX/S)→ Ω1
X/S . Moreover, γ is a quasi-isomorphism when X → S is smooth.

Remark 2.1. If you don’t like the derived category, the “practical” consequence of (CC2) is the existence of the
following long exact sequence.

· · ·

H−1(f∗LX/S) H−1(LY/S) H−1(LY/X)

f∗Ω1
X/S Ω1

Y/S Ω1
Y/X 0

Really though, the derived category is your friend. There’s no reason you should dislike it.

Example 2.2. Continuing with example 1.1, note that Y → S is smooth, so Hi(LY/S) = 0 for all i � 0. Thus
H−1(LY/X) gets identified with the kernel of f∗Ω1

X/S → Ω1
Y/S .

Recall that a morphism of schemes f : X → S is a locally complete intersection if there is a cover of X by open
subsets U ⊂ X such that U → S factors as

U P

S

where P → S is smooth and U ↪→ P is a closed embedding whose ideal I ⊂ OP is generated by a regular sequence
of sections on P [3, tag 068E].

Proposition 2.3. If X → S is a locally complete intersection, the natural map LX/S → τ≥−1LX/S is a quasi-
isomorphism.

Proof. The statement is local on X, so using (CC1) we may assume that S is affine and that X → S itself
factors through a closed embedding i : X ↪→ P over S with P a smooth S-scheme. Now LP/S → Ω1

P/S [0] is a
quasi-isomorphism by (CC3), so the distinguished triangle

i∗LP/S LX/S LX/P i∗LP/S [1]

of (CC2) induces isomorphisms Hi(LX/S)→ Hi(LX/P ) for all i � −1. In other words, we reduce to the case when
P = S = SpecA and X = SpecA/I for I ⊂ A generated by a regular sequence (f1, . . . , fr). We can inductively
reduce to the case r = 1. Indeed, let X ′ = SpecA/(f1, . . . , fr−1), so that X ↪→ S factors through a closed embedding
i : X ↪→ X ′. Then we have a distinguished triangle

i∗LX′/S LX/S LX/X′ i∗LX′/S [1]

from (CC2) and the ideal of X ′ ↪→ S is generated by a regular sequence of length r − 1 and the ideal of X ↪→ X ′

by a regular sequence of length 1. Vanishing of cohomology outside [−1, 0] for these two therefore implies the same
for X ↪→ S.
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Thus we are now in the situation where X = SpecA/(f) for f ∈ A not a zero-divisor. Consider the following
diagram where SpecZ ↪→ SpecZ[T ] is given by T 7→ 0 and SpecA→ SpecZ[T ] is given by T 7→ f .

SpecA/(f) SpecZ

SpecA SpecZ[T ]

Note that Z can be resolved as a Z[T ]-module by the two-term complex of Z[T ]-modules

· · · 0 Z[T ] Z[T ]

where the nontrivial differential is 1 7→ T . Applying −⊗Z[T ] A then gives us the two-term complex of A-modules

· · · 0 A A

where the nontrivial differential is 1 7→ f . This shows that

Z⊗Z[T ] A = coker(·f : A→ A) = A/(f)

so that the square is cartesian, and also that

Tor−1
Z[T ](Z, A) = ker(·f : A→ A) = 0

since f is not a zero divisor in A. Thus we have ToriZ[T ](Z, A) = 0 for all i 6= 0, so using (CC1), we reduce to the
case S = SpecZ[T ] and X = SpecZ with X ↪→ S induced by T 7→ 0. Considering i : X ↪→ S as a morphism of
schemes over X = SpecZ, we apply (CC2) to get a distinguished triangle

i∗LS/X LX/X LX/S i∗LS/X [1].

Now (CC3) implies that LX/X = 0 and also that LS/X = Ω1
X/S [0]. The associated long exact sequence shows that

Hi(LX/S) = 0 for all other i � −1, and this is precisely what we wanted to show.

Proposition 2.4 ([3, tag 08R6]). Given morphisms of schemes

Y X Si

with i a closed embedding with ideal I ⊂ OX and X → S smooth, consider the map δ : i∗I → i∗Ω1
X/S from (2)

as a complex NLY/S of OY -modules concentrated in degrees −1 and 0. Then there is a natural homomorphism
κ : LY/S → NLY/S of complexes which induces a quasi-isomorphism τ≥−1LY/S → NLY/S.

Remark 2.5. Keeping the notation of proposition 2.4, the conormal exact sequence (2) furnishes an isomorphism
H0(NLY/S)→ Ω1

Y/S . Precomposing with H0(κ) gives us an isomorphism H0(LY/S)→ Ω1
Y/S . One can verify that

this coincides with the isomorphism of (CC3) above.

Example 2.6. Let us make explicit what is going on locally, on the level of rings. Let S be the spectrum of a ring
A, X the spectrum of P = A[x1, . . . , xn], and I ⊂ P an ideal. Set B = SpecA/I and Y = SpecB. Then X → S is
smooth and Y ↪→ X is a closed immersion, so NLY/S is given on global sections by

· · · 0 I ⊗P B Ω1
P/A ⊗P B

where the non-trivial differential is the unique B-linear one given by f ⊗ 1 7→ df ⊗ 1. When I is generated by a
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regular sequence, propositions 2.4 and 2.3 together tell us that this complex is quasi-isomorphic to the cotangent
complex LY/S .

Corollary 2.7. If i : Y ↪→ X is a closed embedding with ideal I ⊂ OX , then H−1(LY/X) = i∗I.

Proof. We apply proposition 2.4 with X → S the identity map on X. Then i∗Ω1
X/X = 0, so NLY/X = i∗I[1], which

means that H−1(LY/X) = i∗I.

Remark 2.8. If X → S is any morphism of schemes and i : Y ↪→ X is a closed embedding, we can take the
distinguished triangle (CC2) associated to the composite Y ↪→ X → S. We get a long exact sequence as in remark
2.1, and we make the substitution H−1(LY/X) = i∗I.

· · ·

H−1(i∗LX/S) H−1(LY/S) i∗I

i∗Ω1
X/S Ω1

Y/S 0

One can verify that the connecting map i∗I→ i∗Ω1
X/S is precisely the map δ in (2).

Example 2.9. Consider again the situation of example 1.3. Then X → S is smooth, so H−1(i∗LX/S) = 0. Thus
H−1(LY/S) = ker δ. Taking global sections, this corresponds to the k[x]/(x2)-module (x3)/(x4).

Recall that a complex of OX -modules on a scheme X is perfect if it is locally quasi-isomorphic to a bounded
complex of locally free OX -modules of finite rank.

Corollary 2.10. If X → S is a locally complete intersection, then τ≥−1LX/S is a perfect complex of OX-modules.

Proof. The statement is local on X, so we may X → S factors through a closed embedding X ↪→ P over S with P
a smooth S-scheme and such that the ideal I ⊂ OP of X ↪→ P is generated by a regular sequence of global sections.
Proposition 2.4 furnishes a quasi-isomorphism τ≥−1LX/S → NLX/S . We now need two facts from commutative
algebra: that Ω1

P/S is a locally free OP -module of finite rank since P → S is smooth [3, tag 00TH], and that i∗I is
a locally free OX -module of finite rank since I is generated by a regular sequence [3, tag 07CU]. Thus NLX/S is a
complex of locally free OX -modules of finite rank, so τ≥−1LX/S is perfect.

3 Flat dimension
Suppose we are given a morphism of schemes X → S. Example 1.2 showed us that it is not just Hi(LX/S) that
gives us geometric information, but also Hi(LX/S ⊗ F ) for various OX -modules F . Recall that a complex E of
OX -modules has flat dimension at most n if Hi(E ⊗L F ) = 0 for all i /∈ [−n, 0] and all OX -modules F .

Example 3.1. When X → S is smooth, Ω1
X/S is a locally free OX -module. Thus (CC3) implies that LX/S has

flat dimension 0. More generally, when X → S is a locally complete intersection, we know that LX/S → τ≥−1LX/S
is a quasi-isomorphism by proposition 2.3. But τ≥−1LX/S is perfect by corollary 2.10 and so evidently has flat
dimension at most 1, so LX/S also has flat dimension at most 1.

Remark 3.2 ([1, section 1]). The cotangent complex is remarkably well-behaved. Suppose f : X → S is a
morphism of locally noetherian schemes.

• (First vanishing theorem) The morphism f has geometrically regular fibers if and only if LX/S has flat
dimension 0. Recall that a f is smooth if and only if it is flat, locally of finite type and has geometrically
regular fibers. Thus, having flat dimension 0 is very close to being smooth.
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• (Second vanishing theorem) The morphism f is a locally complete intersection if and only if LX/S has flat
dimension at most 1.

• (Conjecture) The morphism f is a locally complete intersection if and only if it has locally finite flat dimension
and LX/S has finite flat dimension. This conjecture has been settled when S is a Q-scheme and in a wide
assortment of positive characteristic situations as well.

• (Conjecture) If LX/S has finite flat dimension, then it has flat dimension at most 2.

Given this last conjecture, we see that it would be useful to be able to calculate τ≥−2LX/S explicitly. This is done
by a construction of Lichtenbaum and Schlessinger [3, tag 09AM].

Example 3.3. Consider the normalization of the cusp from example 1.1 again, and let F be an OY -module. The
distinguished triangle

f∗LX/S ⊗ F LY/S ⊗ F LY/X ⊗ F (f∗LX/S ⊗ F )[1]

induces a long exact sequence on homology. Since Y → S is smooth, we know that Hi(LY/S ⊗F ) = 0 for all i � 0,
so we get isomorphisms Hi−1(LY/X ⊗ F ) → Hi(f∗LX/S ⊗ F ) for all i ≤ −1. Now X → S is a locally complete
intersection, so LX/S has flat dimension at most 1, so f∗LX/S does as well [3, tag 066L]. The isomorphisms above
therefore imply that LY/X has flat dimension at most 2. Since X → S is not smooth, the first vanishing theorem
leads us to expect that LX/S should have nonzero flat dimension, so there should be an OY -module F such that
H−1(f∗LX/S⊗F ) 6= 0. This would imply that H−2(LY/X ⊗F ) 6= 0, and then the second vanishing theorem should
in turn imply that Y → X is not a locally complete intersection. Let us check these two expectations explicitly.

First, let us produce an OY -module F such that H−1(f∗LX/S ⊗ F ) 6= 0. Let O ∈ X be the origin and
κ(O) its residue field, regarded as a skyscraper sheaf. Using the explicit description of 2.4, we compute that
H−1(LX/S ⊗ κ(O)) 6= 0. Now note that f is flat [2, chapter III, proposition 9.7], so if we let F = f∗κ(O), then

H−1(f∗LX/S ⊗ F ) = H−1(f∗(LX/S ⊗ κ(O))) = f∗H−1(LX/S ⊗ κ(O)) 6= 0.

Second, let us show that Y → X is not a locally complete intersection. Note that if A = k[x, y]/(y2 − x3), then
k[t] = A[t]/(t2 − x, t3 − y). But (t2 − x, t3 − y) is not a regular sequence. Indeed,

A[t]/(t2 − x) = k[x, y, t]/(y2 − x3, t2 − x) = k[y, t]/(y2 − t6)

and y2 − t6 = (y − t3)(y + t3), so t3 − y is a zero-divisor in this ring.

4 Deformation theory
Let S ↪→ S′ be a first order thickening and f : X → S be morphism of schemes. A deformation of X is a first order
thickening X ↪→ X ′ and a flat morphism X ′ → S′ such that the following square is commutative and cartesian.

X X ′

S S′

f (3)

Remark 4.1. In the literature, the requirements that the square be cartesian and X ′ → S′ be flat are often
rephrased in a slick way. Suppose we are given a commutative square of first order thickenings of schemes as in (3).
Let I be the ideal of S ↪→ S′ and J the ideal of X ↪→ X ′. One can construct a certain canonical homomorphism
f∗I→ J of OX -modules using commutativity of the square and the fact that I and J are square-zero. Surjectivity
of f∗I → J is equivalent to the commutative square being cartesian [3, tag 08L2]. Moreover, when f∗I → J is
surjective, the morphism X ′ → S′ is flat if and only if f∗I→ J is an isomorphism [3, tag 08L1].
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Theorem 4.2 ([3, tag 08UZ]). Let S ↪→ S′ be a first order thickening with ideal I ⊂ OS′ and f : X → S a morphism
of schemes.

(a) There exists a canonical element o(f) ∈ Ext2
X(LX/S , f∗I), called the obstruction class, whose vanishing is a

necessary and sufficient condition for there to exist a deformation of X.

(b) The set of isomorphism classes of all deformations of X is a pseudo-torsor for Ext1
X(LX/S , f∗I).1

(c) Given any deformation X ′ of X, the automorphisms of X ′ as a deformation of X are naturally in bijection
with Ext0

X(LX/S , f∗I) = HomX(Ω1
X/S , f

∗I).

Remark 4.3. We can precisely describe the bijection in part (c). Note that HomX(Ω1
X/S , f

∗I) = Derf−1OS
(OX , f∗I).

Given a f−1OS-linear derivation d : OX → f∗I, recall that we have a natural isomorphism f∗I → ker(j] : OX′ →→
OX), so we can regard d as a map OX → OX′ . We then send d to the automorphism of X ′ that is the identity on
topological spaces, and whose map OX′ → OX′ on sheaves of rings is 1 + d ◦ j].

Suppose S is a locally noetherian scheme and f : X → S is locally of finite type. Then LX/S is quasi-isomorphic
to a bounded above complex of locally free OX -modules of finite rank, so

ExtnX(LX/S , f∗I) = Hn(HomX(LX/S , f∗I)).

If X is affine, the local-to-global spectral sequence for ext degenerates and we have

ExtnX(LX/S , f∗I) = Hn(HomX(LX/S , f∗I)).

If f : X → S is smooth, then LX/S → Ω1
X/S [0] is a quasi-isomorphism, so

ExtnX(LX/S , f∗I) = Hn(HomX(Ω1
X/S , f

∗I))

is non-zero only for n = 0. Thus smooth affine schemes always have a unique deformation, but that deformation
can have non-trivial automorphisms. More generally, if f : X → S is a locally complete intersection, then

ExtnX(LX/S , f∗I) = Hn(HomX(τ≥−1LX/S , f
∗I))

is non-zero only for n = 0 and 1. Thus affine locally complete intersections always have deformations, but the
deformations may be non-unique and each one may have non-trivial automorphisms. Finally, general affine schemes
may or may not have any deformations. Let us consider examples of each of these phenomena. The following
calculations have been done here like a caveman—I have not been careful to remember isomorphisms.

Example 4.4. Suppose k is a field and S ↪→ S′ is the first order thickening corresponding to the surjective
ring homomorphism k[ε]/(ε2) →→ k given by ε 7→ 0. Let X = Spec k[t] be the affine line over S. Then X ′ =
Spec k[ε, t]/(ε2) is the unique deformation of X, but it has automorphisms σ : X ′ → X ′ given by t 7→ t+εs for some
s ∈ k[ε, t]/(ε2). But any ε appearing in s will be killed by the ε in front, so in fact we can take s ∈ k[t] ⊂ k[ε, t]/(ε2).
So the automorphisms of X ′ are in bijection with k[t]. Notice also that Ω1

X/S corresponds to the free k[t]-module
k[t]dt, and f∗I to (ε)⊗k[ε]/ε2 k[t] ' k[t], so

Homk[t](k[t]dt, (ε)⊗k[ε]/ε2 k[t]) ' k[t]

also.

Example 4.5 (Deformations of the node). Again, suppose k is a field and S ↪→ S′ is the first order thickening
corresponding to the surjective ring homomorphism k[ε]/(ε2) →→ k given by ε 7→ 0 and let X = Spec k[x, y]/(xy).
Then X ′a := Spec k[x, y, ε]/(ε2, xy − aε) is certainly a deformation of X for any a ∈ k. Any isomorphism X ′0 → X ′a
would have to be given by x 7→ x − εs and y 7→ y − εt for s, t ∈ k[x, y, ε]/(ε2, xy), and we can assume ε does not
appear in s or t. But then

xy − aε 7→ xy − ε(ys+ xt+ a)
1A set S is a pseudo-torsor for a group G if G acts simply transitively on S. Then S is a torsor if, in addition, it is nonempty.
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which vanishes modulo xy precisely if ys+ xt = −a modulo xy. A little thought shows that this is only possible if
s is a multiple of x, t a muliply of y and a = 0. The multiples of x in k[x, y, ε]/(ε2, xy) are evidently just k[x] and
similarly with y, so we see that the automorphisms of X0 are k[x] ⊕ k[y] and that Xa is not isomorphic to X0 for
any a ∈ k. Generalizing slightly, we can show that X ′a is not isomorphic to X ′b for any a 6= b in k.

Let’s now compare this to ext modules of the cotangent complex. Let B = k[x, y]/(xy) Note that f∗I corresponds
to the B-module (ε)⊗k[ε]/(ε2) B ' B and NLX/S to the complex of B-modules

· · · 0 (xy)⊗k[x,y] B Bdx⊕Bdy

where the non-trivial differential is given by xy ⊗ f 7→ fydx+ fxdy. Then HomX(NLX/S , f∗I) is the complex

HomB(Bdx⊕Bdy,B) Hom((xy)⊗k[x,y] B,B) 0 · · ·

which is isomorphic to the complex

B ⊕B B 0 · · · .(y, x)

Now homology in degree 1 of this complex is B/(x, y) ' k so the set of deformations is in bijection with k, as we
would hope. Moreover, the automorphisms of any given deformation are in bijection with xB ⊕ yB ' k[x] ⊕ k[y],
which again we had observed earlier.

Example 4.6 (Obstructed deformations).
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